Understanding of Neuroimaging and Its Perspectives in Mental Illnesses

정신질환에서 뇌영상의 이해와 전망

  • Kim, Jae-Jin (Department of Psychiatry, Yonsei University College of Medicine) ;
  • Han, Ki-Wan (Department of Biomedical Science, Yonsei University College of Medicine) ;
  • Lee, Jung-Suk (Department of Psychiatry, Yonsei University College of Medicine) ;
  • Choi, Soo-Hee (Department of Psychiatry, Yonsei University College of Medicine)
  • 김재진 (연세대학교 의과대학 정신과학교실) ;
  • 한기완 (연세대학교 의과대학 의생명과학부) ;
  • 이정석 (연세대학교 의과대학 정신과학교실) ;
  • 최수희 (연세대학교 의과대학 정신과학교실)
  • Received : 2011.01.10
  • Accepted : 2011.02.01
  • Published : 2011.02.28

Abstract

Neuroimaging in psychiatry encompasses the powerful tools available for the in vivo study of brain structure and function. MRI including the volumetry, voxel-base morphometry(VBM) and diffusion tensor imaging (DTI) are useful for assessing brain structure, whereas function MRI, positron emission tomography(PET) and magnetoencephalography(MEG) are well established for probing brain function. These tools are well tolerated by the vast majority of psychiatric patients because they provide a powerful but noninvasive means to directly evaluate the brain. Although neuroimaging technology is currently used only to rule in or rule out general medical conditions as opposed to diagnosing primary mental disorders, it may be used to confirm or make psychiatric diagnoses in the future. In addition, neuroimaging may be valuable for predicting the natural course of psychiatric illness as well as treatment response.

Keywords

References

  1. Novelline RA, Squire LF. Squire's Fundamentals of Radiology. 5th ed. Massachusetts, USA: Harvard University Press;2004.
  2. Lauterbur PC. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 1973;242:190-191. https://doi.org/10.1038/242190a0
  3. Hinshaw WS, Bottomley PA, Holland GN. Radiographic thin-section image of the human wrist by nuclear magnetic resonance. Nature 1977;270:722-723. https://doi.org/10.1038/270722a0
  4. Lipton ML. Totally Accessible MRI: A User's Guide to Principles, Technology, and Applications. 1st ed. New York, USA: Springer;2008.
  5. O'Brien JT. Role of imaging techniques in the diagnosis of dementia. Br J Radiol 2007;80:S71-S77. https://doi.org/10.1259/bjr/33117326
  6. Ashburner J, Friston KJ. Voxel-based morphometry--the methods. Neuroimage 2000;11:805-821. https://doi.org/10.1006/nimg.2000.0582
  7. Watkins KE, Paus T, Lerch JP, Zijdenbos A, Collins DL, Neelin P, et al. Structural asymmetries in the human brain: a voxel-based statistical analysis of 142 MRI scans. Cereb Cortex 2001;11:868-877. https://doi.org/10.1093/cercor/11.9.868
  8. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A 2000;97:4398-4403. https://doi.org/10.1073/pnas.070039597
  9. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 1992;89:5951-5955. https://doi.org/10.1073/pnas.89.13.5951
  10. Roy CS, Sherrington CS. On the Regulation of the Blood-supply of the Brain. J Physiol 1890;11:85-158. https://doi.org/10.1113/jphysiol.1890.sp000321
  11. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 1992;89:5675-5679. https://doi.org/10.1073/pnas.89.12.5675
  12. Folstein M, Folstein S. Functional expressions of the aging brain. Nutr Rev 2010;68 Suppl 2:S70-S73. https://doi.org/10.1111/j.1753-4887.2010.00351.x
  13. Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 1990;176:439-445. https://doi.org/10.1148/radiology.176.2.2367658
  14. Filler AG, Bell BA. Axonal transport, imaging, and the diagnosis of nerve compression. Br J Neurosurg 1992;6:293-295. https://doi.org/10.3109/02688699209023786
  15. Filler A. Magnetic resonance neurography and diffusion tensor imaging: origins, history and clinical impact of the first 50,000 cases with an assessment of efficacy and utility in a prospective 5,000-patient study group. Neurosurgery 2009;65:A29-A43. https://doi.org/10.1227/01.NEU.0000351279.78110.00
  16. Cherry S, Dahlbom M. PET: Physics, Instrumentation, and Scanners. 1st ed. New York, USA: Springer;2006.
  17. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron-emission transaxial tomograph for nuclear imaging(PETT). Radiology 1975;114:89-98. https://doi.org/10.1148/114.1.89
  18. Cho ZH, Chan JK, Eriksson L. Circular ring transverse axial positron camera for 3-dimensional reconstruction of radionuclides distribution. IEEE Trans Nucl Sci 1976;23:613-622. https://doi.org/10.1109/TNS.1976.4328315
  19. Pichler BJ, Judenhofer MS, Pfannenberg C. Multimodal imaging approaches: PET/CT and PET/MRI. Handb Exp Parmacol;2008:109-132.
  20. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, et al. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 1979;44:127-137. https://doi.org/10.1161/01.RES.44.1.127
  21. Fowler JS, Ido T. Initial and subsequent approach for the synthesis of 18FDG. Semin Nucl Med 2002;32:6-12. https://doi.org/10.1053/snuc.2002.29270
  22. Som P, Atkins HL, Bandoypadhyay D, Fowler JS, Mac-Gregor RR, Matsui K, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose(F-18): nontoxic tracer for rapid tumor detection. J Nucl Med 1980;21:670-675.
  23. Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2(15)O: I. Theory and error analysis. J Nucl Med 1983;24:782-789.
  24. Ricker JH, Muller RA, Zafonte RD, Black KM, Millis SR, Chugani H. Verbal recall and recognition following traumatic brain injury: a [0-15]-water positron emission tomography study. J Clin Exp Neuropsychol 2001;23:196-206. https://doi.org/10.1076/jcen.23.2.196.1204
  25. Morris ED, Fisher RE, Alpert NM, Rauch SL, Fischman AJ. In vivo imaging of neuromodulation using positron emission tomography: optimal ligand characteristics and task length for detection of activation. Hum Brain Mapp 1995;3:35-55. https://doi.org/10.1002/hbm.460030105
  26. Cohen D. Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer. Science 1972;175:664-666. https://doi.org/10.1126/science.175.4022.664
  27. Sutherling WW, Crandall PH, Darcey TM, Becker DP, Levesque MF, Barth DS. The magnetic and electric fields agree with intracranial localizations of somatosensory cortex. Neurology 1988;38:1705-1714. https://doi.org/10.1212/WNL.38.11.1705
  28. de Jongh A, Baayen JC, de Munck JC, Heethaar RM, Vandertop WP, Stam CJ. The influence of brain tumor treatment on pathological delta activity in MEG. Neuroimage 2003;20:2291-2301. https://doi.org/10.1016/j.neuroimage.2003.07.030
  29. Staal WG, Hulshoff Pol HE, Schnack HG, Hoogendoorn ML, Jellema K, Kahn RS. Structural brain abnormalities in patients with schizophrenia and their healthy siblings. Am J Psychiatry 2000;157:416-421. https://doi.org/10.1176/appi.ajp.157.3.416
  30. Flaum M, Swayze VW 2nd, O'Leary DS, Yuh WT, Herhardt JC, Arndt SV, et al. Effects of diagnosis, laterality, and gender on brain morphology in schizophrenia. Am J Psychiatry 1995;152:704-714. https://doi.org/10.1176/ajp.152.5.704
  31. McKinnon MC, Yucel K, Nazarov A, MacQueen GM. A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J Psychiatry Neurosci 2009;34:41-54.
  32. Keshavan MS, Dick E, Mankowski I, Harenski K, Montrose DM, Diwadkar V, et al. Decreased left amygdala and hippocampal volumes in young offspring at risk for schizophrenia. Schizophr Res 2002;58:173-183. https://doi.org/10.1016/S0920-9964(01)00404-2
  33. Seidman LJ, Faraone SV, Goldstein JM, Kremen WS, Horton NJ, Makris N, et al. Left hippocampal volume as a vulnerability indicator for schizophrenia: a magnetic resonance imaging morphometric study of nonpsychotic first-degree relatives. Arch Gen Psychiatry 2002;59:839-849. https://doi.org/10.1001/archpsyc.59.9.839
  34. Chen MC, Hamilton JP, Gotlib IH. Decreased hippocampal volume in healthy girls at risk of depression. Arch Gen Psychiatry 2010;67:270-276. https://doi.org/10.1001/archgenpsychiatry.2009.202
  35. Jung WH, Jang JH, Byun MS, An SK, Kwon JS. Structural brain alterations in individuals at ultra-high risk for psychosis: a review of magnetic resonance imaging studies and future directions. J Korean Med Sci 2010;25:1700-1709. https://doi.org/10.3346/jkms.2010.25.12.1700
  36. Kaymaz N, van Os J. Heritability of structural brain traits an endophenotype approach to deconstruct schizophrenia. Int Rev Neurobiol 2009;89:85-130.
  37. DeLisi LE, Hoff AL, Schwartz JE, Shields GW, Halthore SN, Gupta SM, et al. Brain morphology in first-episode schizophrenic-like psychotic patients: a quantitative magnetic resonance imaging study. Biol Psychiatry 1991;29:159-175.
  38. Hirayasu Y, Shenton ME, Salisbury DF, Dickey CC, Fischer IA, Mazzoni P, et al. Lower left temporal lobe MRI volumes in patients with first-episode schizophrenia compared with psychotic patients with first-episode affective disorder and normal subjects. Am J Psychiatry 1998;155:1384-1391. https://doi.org/10.1176/ajp.155.10.1384
  39. Keshavan MS, Haas GL, Kahn CE, Aguilar E, Dick EL, Schooler NR, et al. Superior temporal gyrus and the course of early schizophrenia: progressive, static, or reversible? J Psychiatr Res 1998;32:161-167. https://doi.org/10.1016/S0022-3956(97)00038-1
  40. Ebdrup BH, Glenthoj B, Rasmussen H, Aggernaes B, Langkilde AR, Paulson OB, et al. Hippocampal and caudate volume reductions in antipsychotic-naive first-episode schizophrenia. J Psychiatry Neurosci 2010;35:95-104. https://doi.org/10.1503/jpn.090049
  41. Cahn W, Hulshoff Pol HE, Bongers M, Schnack HG, Mandl RC, Van Haren NE, et al. Brain morphology in antipsychotic-nalve schizophrenia: a study of multiple brain structures. Br J Psychiatry Suppl 2002;43:s66-s72.
  42. Gur RE, Cowell P, Turetsky BI, Gallacher F, Cannon T, Bilker W, et al. A follow-up magnetic resonance imaging study of schizophrenia. Relationship of neuroanatomical changes to clinical and neurobehavioral measures. Arch Gen Psychiatry 1998;55:145-152. https://doi.org/10.1001/archpsyc.55.2.145
  43. Takahashi T, Wood SJ, Soulsby B, McGorry PD, Tanino R, Suzuki M, et al. Follow-up MRI study of the insular cortex in first-episode psychosis and chronic schizophrenia. Schizophr Res 2009;108:49-56. https://doi.org/10.1016/j.schres.2008.12.029
  44. Scherk H, Falkai P. Effects of antipsychotics on brain structure. Curr Opin Psychiatry 2006;19:145-150. https://doi.org/10.1097/01.yco.0000214339.06507.d8
  45. Bonilha L, Molnar C, Horner MD, Anderson B, Forster L, George MS, et al. Neurocognitive deficits and prefrontal cortical atrophy in patients with schizophrenia. Schizophr Res 2008;101:142-151. https://doi.org/10.1016/j.schres.2007.11.023
  46. Cheng YQ, Xu J, Chai P, Li HJ, Luo CR, Yang T, et al. Brain volume alteration and the correlations with the clinical characteristics in drug-nal¨ve first-episode MDD patients: a voxel-based morphometry study. Neurosci Lett 2010;480:30-34. https://doi.org/10.1016/j.neulet.2010.05.075
  47. Narr KL, Toga AW, Szeszko P, Thompson PM, Woods RP, Robinson D, et al. Cortical thinning in cingulate and occipital cortices in first episode schizophrenia. Biol Psychiatry 2005;58:32-40. https://doi.org/10.1016/j.biopsych.2005.03.043
  48. Nesvag R, Lawyer G, Varnas K, Fjell AM, Walhovd KB, Frigessi A, et al. Regional thinning of the cerebral cortex in schizophrenia: effects of diagnosis, age and antipsychotic medication. Schizophr Res 2008;98:16-28.
  49. Schultz CC, Koch K, Wagner G, Roebel M, Nenadic I, Gaser C, et al. Increased parahippocampal and lingual gyrification in first-episode schizophrenia. Schizophr Res 2010;123:137-144. https://doi.org/10.1016/j.schres.2010.08.033
  50. Qiu A, Zhong J, Graham S, Chia MY, Sim K. Combined analyses of thalamic volume, shape and white matter integrity in first-episode schizophrenia. Neuroimage 2009;47:1163-1171. https://doi.org/10.1016/j.neuroimage.2009.04.027
  51. Qiu A, Tuan TA, Woon PS, Abdul-Rahman MF, Graham S, Sim K. Hippocampal-cortical structural connectivity disruptions in schizophrenia: an integrated perspective from hippocampal shape, cortical thickness, and integrity of white matter bundles. Neuroimage 2010;52:1181-1189. https://doi.org/10.1016/j.neuroimage.2010.05.046
  52. Ecker C, Marquand A, Mourao-Miranda J, Johnston P, Daly EM, Brammer MJ, et al. Describing the brain in autism in five dimensions--magnetic resonance imagingassisted diagnosis of autism spectrum disorder using a multiparameter classification approach. J Neurosci 2010;30:10612-10623. https://doi.org/10.1523/JNEUROSCI.5413-09.2010
  53. Yoon U, Lee JM, Im K, Shin YW, Cho BH, Kim IY, et al. Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia. Neuroimage 2007;34:1405-1415. https://doi.org/10.1016/j.neuroimage.2006.11.021
  54. Kanaan RA, Kim JS, Kaufmann WE, Pearlson GD, Barker GJ, McGuire PK. Diffusion tensor imaging in schizophrenia. Biol Psychiatry 2005;58:921-929. https://doi.org/10.1016/j.biopsych.2005.05.015
  55. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007;8:700-711. https://doi.org/10.1038/nrn2201
  56. Le Bihan D, Jezzard P, Haxby J, Sadato N, Rueckert L, Mattay V. Functional magnetic resonance imaging of the brain. Ann Intern Med 1995;122:296-303. https://doi.org/10.7326/0003-4819-122-4-199502150-00010
  57. Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P. Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study. Hum Brain Mapp 2005;26:231-239. https://doi.org/10.1002/hbm.20160
  58. Perlstein WM, Dixit NK, Carter CS, Noll DC, Cohen JD. Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia. Biol Psychiatry 2003;53:25-38. https://doi.org/10.1016/S0006-3223(02)01675-X
  59. Keedwell PA, Andrew C, Williams SC, Brammer MJ, Phillips ML. The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry 2005;58:843-853. https://doi.org/10.1016/j.biopsych.2005.05.019
  60. Taylor SF, Phan KL, Britton JC, Liberzon I. Neural response to emotional salience in schizophrenia. Neuropsychopharmacology 2005;30:984-995. https://doi.org/10.1038/sj.npp.1300679
  61. Dierks T, Linden DE, Jandl M, Formisano E, Goebel R, Lanfermann H, et al. Activation of Heschl's gyrus during auditory hallucinations. Neuron 1999;22:615-621. https://doi.org/10.1016/S0896-6273(00)80715-1
  62. Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD. Detecting awareness in the vegetative state. Science 2006;313:1402. https://doi.org/10.1126/science.1130197
  63. Haut KM, Lim KO, MacDonald A 3rd. Prefrontal cortical changes following cognitive training in patients with chronic schizophrenia: effects of practice, generalization, and specificity. Neuropsychopharmacology 2010;35:1850-1859. https://doi.org/10.1038/npp.2010.52
  64. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001;98:676-682. https://doi.org/10.1073/pnas.98.2.676
  65. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 2009;33:279-296. https://doi.org/10.1016/j.neubiorev.2008.09.002
  66. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 2003;100:253-258. https://doi.org/10.1073/pnas.0135058100
  67. Gusnard DA, Raichle ME, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2001;2:685-694. https://doi.org/10.1038/35094500
  68. Eichele T, Debener S, Calhoun VD, Specht K, Engel AK, Hugdahl K, et al. Prediction of human errors by maladaptive changes in event-related brain networks. Proc Natl Acad Sci U S A 2008;105:6173-6178. https://doi.org/10.1073/pnas.0708965105
  69. Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science 2004;304:1926-1929. https://doi.org/10.1126/science.1099745
  70. Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN. Wandering minds: the default network and stimulus-independent thought. Science 2007;315:393-395. https://doi.org/10.1126/science.1131295
  71. Zhou Y, Liang M, Tian L, Wang K, Hao Y, Liu H, et al. Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res 2007;97:194-205. https://doi.org/10.1016/j.schres.2007.05.029
  72. Castellanos FX, Margulies DS, Kelly C, Uddin LQ, Ghaffari M, Kirsch A, et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult attentiondeficit/hyperactivity disorder. Biol Psychiatry 2008;63:332-337. https://doi.org/10.1016/j.biopsych.2007.06.025
  73. Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. Competition between functional brain networks mediates behavioral variability. Neuroimage 2008;39:527-537. https://doi.org/10.1016/j.neuroimage.2007.08.008
  74. Damoiseaux JS, Beckmann CF, Arigita EJ, Barkhof F, Scheltens P, Stam CJ, et al. Reduced resting-state brain activity in the "default network" in normal aging. Cereb Cortex 2008;18:1856-1864. https://doi.org/10.1093/cercor/bhm207
  75. Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, et al. Changes in hippocampal connectivity in the early stages of Alzheimer's disease: evidence from resting state fMRI. Neuroimage 2006;31:496-504. https://doi.org/10.1016/j.neuroimage.2005.12.033
  76. Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD. Aberrant "default mode" functional connectivity in schizophrenia. Am J Psychiatry 2007;164:450-457. https://doi.org/10.1176/appi.ajp.164.3.450
  77. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 2007;62:429-437. https://doi.org/10.1016/j.biopsych.2006.09.020
  78. Pihlajamaki M, O'Keefe K, Bertram L, Tanzi RE, Dickerson BC, Blacker D, et al. Evidence of altered posteromedial cortical FMRI activity in subjects at risk for Alzheimer disease. Alzheimer Dis Assoc Disord 2010;24:28-36. https://doi.org/10.1097/WAD.0b013e3181a785c9
  79. Horwitz B. The elusive concept of brain connectivity. Neuroimage 2003;19:466-470. https://doi.org/10.1016/S1053-8119(03)00112-5
  80. Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 2009;19:72-78. https://doi.org/10.1093/cercor/bhn059
  81. Hampson M, Tokoglu F, Sun Z, Schafer RJ, Skudlarski P, Gore JC, et al. Connectivity-behavior analysis reveals that functional connectivity between left BA39 and Broca's area varies with reading ability. Neuroimage 2006;31:513-519. https://doi.org/10.1016/j.neuroimage.2005.12.040
  82. Ranganath C, Heller A, Cohen MX, Brozinsky CJ, Rissman J. Functional connectivity with the hippocampus during successful memory formation. Hippocampus 2005;15:997-1005. https://doi.org/10.1002/hipo.20141
  83. Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS, et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 2005;8:828-834. https://doi.org/10.1038/nn1463
  84. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005;102:9673-9678. https://doi.org/10.1073/pnas.0504136102
  85. Raichle ME, Gusnard DA. Intrinsic brain activity sets the stage for expression of motivated behavior. J Comp Neurol 2005;493:167-176. https://doi.org/10.1002/cne.20752
  86. Fransson P. How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 2006;44:2836-2845. https://doi.org/10.1016/j.neuropsychologia.2006.06.017
  87. Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD, et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain 2010;133:1352-1367. https://doi.org/10.1093/brain/awq075
  88. Kim E, Ku J, Namkoong K, Lee W, Lee KS, Park JY, et al. Mammillothalamic functional connectivity and memory function in Wernicke's encephalopathy. Brain 2009;132:369-376. https://doi.org/10.1093/brain/awn311
  89. Moses-Kolko EL, Perlman SB, Wisner KL, James J, Saul AT, Phillips ML. Abnormally reduced dorsomedial prefrontal cortical activity and effective connectivity with amygdala in response to negative emotional faces in postpartum depression. Am J Psychiatry 2010;167:1373-1380. https://doi.org/10.1176/appi.ajp.2010.09081235
  90. Kim E, Ku J, Jung YC, Lee H, Kim SI, Kim JJ, et al. Restoration of mammillothalamic functional connectivity through thiamine replacement therapy in Wernicke's encephalopathy. Neurosci Lett 2010;479:257-261. https://doi.org/10.1016/j.neulet.2010.05.074