DOI QR코드

DOI QR Code

Palladium(II) Aryloxides of Pd(2,6-(CH2NMe2)2C6H3)(OC6H4-X-p) (X = Me, NO2): Synthesis, Property and Reactivity towards Diphenyliodium Chloride

  • Received : 2011.05.13
  • Accepted : 2011.07.01
  • Published : 2011.08.20

Abstract

para-Substituted phenoxide derivatives of Pd(II) having an NCN pincer, Pd(NCN)($OC_6H_4$-p-X) (NCN = 2,6-$(CH_2NMe_2)_2C_6H_3$; X = $NO_2$ (1), Me (2)) were prepared by the reaction of Pd(NCN)($OSO_2CF_3$) with equi-molar amount of $NaOC_6H_4$-p-X. Treatment of Pd(NCN)($OSO_2CF_3$) with an excess amount of $NaOC_6H_4$-p-Me affords the hydrogen-bonding adduct complex 3 ($2{\cdot}HOC_6H_4$-p-Me). Complex 3 can also be obtained from benzene solution of 2 in the presence of free $HOC_6H_4$-p-Me. Complex 1 does not undergo adduct formation with $HOC_6H_4-p-NO_2$ neither from metathesis reaction of Pd(NCN)($OSO_2CF_3$) with an excess amount of $NaOC_6H_4-p-NO_2$ nor from treatment of 1 with free $HOC_6H_4-p-NO_2$. Complex 3 undergoes fast exchange of the coordinated p-cresolate with the hydrogen-bonding p-cresol. Complex 2 undergoes ${\sigma}$-ligand exchange reaction with $HOC_6H_4-p-NO_2$ to give 1. The exchange reaction, however, is irreversible as readily anticipated from their respective $pK_a$ values of the phenol derivatives. Reaction of 2 with diphenyliodium chloride quantitatively produced Pd(NCN)Cl and PhI along with liberation of O-phenylated product $PhOC_6H_4$-p-Me which was identified by GC/MS spectroscopy.

Keywords

References

  1. Mann, G.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 13109. https://doi.org/10.1021/ja963273w
  2. Shelby, Q.; Kataoka, N.; Mann, G.; Hartwig, J. F. J. Am. Chem. Soc. 2000, 122, 10718. https://doi.org/10.1021/ja002543e
  3. Palucki, M.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 10333. https://doi.org/10.1021/ja962408v
  4. Kuwabe, S.; Torraca, K. E.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 12202. https://doi.org/10.1021/ja012046d
  5. Parrish, C. A.; Buchwald, S. L. J. Org. Chem. 2001, 66, 2498. https://doi.org/10.1021/jo001426z
  6. Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 4369. https://doi.org/10.1021/ja990324r
  7. Watanabe, M.; Nishiyama, M.; Koie, Y. Tetrahedron Lett. 1999, 40, 8837. https://doi.org/10.1016/S0040-4039(99)01855-9
  8. Sawyer, J. S. Tetrahedron 2000, 56, 5045. https://doi.org/10.1016/S0040-4020(00)00257-X
  9. Han, R.; Hillhouse, G. L. J. Am. Chem. Soc. 1997, 119, 8135. https://doi.org/10.1021/ja9714999
  10. Mann, G.; Incarvito, C.; Rheingold, A. L.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 3224. https://doi.org/10.1021/ja984321a
  11. Palucki, M.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 3395. https://doi.org/10.1021/ja9640152
  12. Hallgren, J. E.; Matthews, R. O. J. Organomet. Chem. 1979, 175, 135. https://doi.org/10.1016/S0022-328X(00)82305-0
  13. Moiseev, I. I.; Vargaftik, M. N.; Chernysheva, T. V.; Stromnova, T. A.; Gekhman, A. E.; Tsirkov, G. A.; Makhlina, A. M. J. Mol. Catal. A 1996, 108, 77. https://doi.org/10.1016/1381-1169(95)00292-8
  14. Takagi, M.; Miyagi, H.; Yoneyama, T.; Ohgomori, Y. J. Mol. Catal. A 1998, 129, L1. https://doi.org/10.1016/S1381-1169(97)00188-X
  15. Song, H. Y.; Park, E. D.; Lee, J. S. J. Mol. Catal. A 2000, 154, 243. https://doi.org/10.1016/S1381-1169(99)00392-1
  16. Yin, G.; Jia, C.; Kitamura, T.; Yamaji, T.; Fujiwara, Y. Catal. Lett. 2000, 69, 89. https://doi.org/10.1023/A:1019005519692
  17. Kubota, Y.; Hanaoka, T.; Takeuchi, K.; Sugi, Y. J. Mol. Cat. A 1996, 111, L187. https://doi.org/10.1016/1381-1169(96)00217-8
  18. Heck, R. F. Adv. Catal. 1987, 26, 323.
  19. Schoenberg, A.; Bartoletti, I.; Heck, R. F. J. Org. Chem. 1974, 39, 3318. https://doi.org/10.1021/jo00937a003
  20. Matsukawa, Y.; Mizukado, J.; Quan, H.; Tamura, M.; Sekiya, A. Angew. Chem., Int. Ed. 2005, 44, 1128. https://doi.org/10.1002/anie.200462200
  21. Gligorich, K. M.; Schultz, M. J.; Sigman, M. S. J. Am. Chem. Soc. 2006, 128, 2794. https://doi.org/10.1021/ja0585533
  22. Yasuda, H.; Choi, J.-C.; Lee, S.-C.; Sakakura, T. Organometallics 2002, 21, 1216. https://doi.org/10.1021/om010877m
  23. Rees, W. M.; Churchill, M. R.; Fettinger, J. C.; Atwood, J. D. Organometallics 1985, 4, 2179. https://doi.org/10.1021/om00131a021
  24. Huffman, J. C.; Moloy, K. G.; Marsella, J. A.; Caulton, K. G. J. Am. Chem. Soc. 1980, 102, 3009. https://doi.org/10.1021/ja00529a022
  25. Ruiz, J.; Rodriguez, V.; Lopez, G.; Chaloner, P. A.; Hitchcock, P. B. Organometallics 1996, 15, 1662. https://doi.org/10.1021/om950409a
  26. Osakada, K.; Ishii, H. Inorg. Chim. Acta 2004, 357, 3007. https://doi.org/10.1016/j.ica.2004.02.030
  27. Braga, D.; Sabatino, P.; Bugno, C. D.; Leoni, P.; Pasquali, M. J. Organomet. Chem. 1987, 334, C46. https://doi.org/10.1016/0022-328X(87)80110-9
  28. Seligson, A. L.; Cowan, R. L.; Trogler, W. C. Inorg. Chem. 1991, 30, 3371. https://doi.org/10.1021/ic00018a003
  29. Koelle, U.; Hong Wang, M.; Raabe, G. Organometallics 1991, 10, 2573. https://doi.org/10.1021/om00054a015
  30. Osakada, K.; Ohshiro, K.; Yamamoto, A. Organometallics 1991, 10, 404. https://doi.org/10.1021/om00048a014
  31. Kapteijn, G. M.; Dervisi, A.; Grove, D. M.; Kooijman, H.; Lakin, M. T.; Spek, A. L.; van Koten, G. J. Am. Chem. Soc. 1995, 117, 1039.
  32. Kegley, S. E.; Schaverien, C. J.; Freudenberger, J. H.; Bergman, R. G. J. Am. Chem. Soc. 1987, 109, 6563. https://doi.org/10.1021/ja00255a080
  33. Haarman, H. F.; Kaagman, J.-W. F.; Smeets, W. J. J.; Spek, A. L.; Vrieze, K. Inorg. Chim. Acta 1998, 270, 34. https://doi.org/10.1016/S0020-1693(97)05821-0
  34. Kim, Y.-J.; Osakada, K.; Takenaka, A.; Yamamoto, A. J. Am. Chem. Soc. 1990, 112, 1096. https://doi.org/10.1021/ja00159a032
  35. Alsters, P. L.; Baesjou, P. J.; Janssen, M. D.; Kooijman, H.; Sicherer-Roetman, A.; Spek, A. L.; van Koten, G. Organometallics 1992, 11, 4124. https://doi.org/10.1021/om00060a032
  36. Mann, G.; Shelby, Q.; Roy, A. H.; Hartwig, J. F. Organometallics 2003, 22, 2775. https://doi.org/10.1021/om030230x
  37. Rettig, M. F.; Maitlis, P. M.; Cotton, F. A.; Webbs, T. R. Inorg. Synth. 1971, 134.
  38. Grove, D. M.; van Koten, G.; Louwen, J. N.; Noltes, J. G.; Spek, A. L.; Ubbels, H. J. C. J. Am. Chem. Soc. 1982, 104, 6609. https://doi.org/10.1021/ja00388a022
  39. Terheijden, J.; van Koten, G.; Muller, F.; Grove, D. M.; Vrieze, K.; Nielsen, E.; Stam, C. H. J. Organomet. Chem. 1986, 315, 401. https://doi.org/10.1016/0022-328X(86)80460-0
  40. Kim, Y.-J.; Choi, J.-C.; Osakada, K. J. Organomet. Chem. 1995, 491, 97. https://doi.org/10.1016/0022-328X(94)05182-B
  41. Muller, J.; Freisinger, E.; Lax, P.; Megger, D. A.; Polonius, F. Inorg. Chim. Acta 2007, 360, 255. https://doi.org/10.1016/j.ica.2006.07.031
  42. Miller, R. G.; Stauffer, R. D.; Fahey, D. R.; Parnell, D. R. J. Am. Chem. Soc. 1970, 92, 1511. https://doi.org/10.1021/ja00709a012
  43. Albinati, A.; Pregosin, P. S.; Wombacher, F. Inorg. Chem. 1990, 29, 1812. https://doi.org/10.1021/ic00335a010
  44. Kapteijn, G. M.; Meijer, M. D.; Grove, D. M.; Veldman, N.; Spek, A. L.; van Koten, G. Inorg. Chim. Acta 1997, 264, 211. https://doi.org/10.1016/S0020-1693(97)05680-6
  45. Kuznetsov, V. F.; Yap, G. P. A.; Bensimon, C.; Alper, H. Inorg. Chim. Acta 1998, 280, 172. https://doi.org/10.1016/S0020-1693(98)00171-6
  46. Dean, J. A. Lange's Handbook of Chemistry, 13th ed.; McGraw- Hill Book Company: New York, 1985; p 5-29.
  47. Pimentel, G. C.; McClellan, A. L. The Hydrogen Bond; W. H. Freeman: San Francisco, 1960; p 340.
  48. Contel, M.; Stol, M.; Casado, M. A.; van Klink, G. P. M.; Ellis, D. D.; Spek, A. L.; van Koten, G. Organometallics 2002, 21, 4556. https://doi.org/10.1021/om020286b