• Title/Summary/Keyword: ${\sigma}$-Ligand exchange

Search Result 4, Processing Time 0.018 seconds

Isotropic NMR Shifts in Some Pyridine-Type Ligands Complexed with Paramagnetic Undecatungstocobalto(Ⅱ)silicate and Undecatungstonickelo(Ⅱ) silicate Anions. Identifications of Dumbbell-Shaped 4,$4^{\prime}$-Bipyridyl Complexes

  • Moonhee Ko;Gyung Ihm Rhyu;Hyunsoo So
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.500-506
    • /
    • 1993
  • $^1H$ and $^{13}C$ NMR spectra for pyridine, ${\beta}$-and ${\gamma}$-picoline, pyrazine, and 4,4'-bipyridyl complexed with paramagnetic undecatungstocobalto(II)silicate and undecatungstonickelo(II)silicate anions are reported. For these complexes the ligand exchange is slow on the NMR time scale and the pure resonance lines have been observed at room temperature. The isotropic shifts in nickel complexes can be interpreted in terms of contact shifts by ${\sigma}$-electron delocalization. Both contact and pseudocontact shifts contribute to the isotropic shifts in cobalt complexes. The contact shifts, which are obtained by subtracting the pseudocontact shifts from the isotropic shifts, require both ${\sigma}$-and ${\pi}$-electron delocalization from the cobalt ion. Slow ligand exchange has also allowed us to identify the species formed when bidentate ligands react with the heteropolyanions. Pyrazine forms a 1 : 1 complex, while 4,4'-bipyridyl forms both 1 : 1 and dumbbell-shaped 1 : 2 complexes.

Pyridinolysis of O,O-Diphenyl S-Phenyl Phosphorothiolates in Acetonitrile

  • Adhikary, Keshab Kumar;Lumbiny, Bilkis Jahan;Kim, Chan-Kyung;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.851-855
    • /
    • 2008
  • The reactions of O,O-diphenyl Z-S-phenyl phosphorothiolates with X-pyridines have been studied kinetically in acetonitrile at $35.0{^{\circ}C}$. The Hammett plots for substituent (Z) variations in the leaving group (log $k_2$ vs. $\sigma$ Z) are biphasic concave downwards with breaks at Z = H. The large magnitudes of ${\rho}X(\rho_{nuc})$, ${\beta}X(\rho_{nuc})$, and the cross-interaction constant, $\rho$XZ, suggest frontside nucleophilic attack toward the leaving group. The sign reversal of $\rho$Z from positive in $\sigma$ Z $\leq$ 0 to negative in $\sigma$ Z $\geq$ 0 is interpreted as the change in mechanism from concerted to stepwise with rate-limiting expulsion of the leaving group. The anomalous negative sign of $\rho$ Z for leaving groups with electron-withdrawing substituents is interpreted as the intramolecular ligand exchange process of the leaving group from the equatorial position in the intermediate to the apical position in the TS.

Palladium(II) Aryloxides of Pd(2,6-(CH2NMe2)2C6H3)(OC6H4-X-p) (X = Me, NO2): Synthesis, Property and Reactivity towards Diphenyliodium Chloride

  • Jung, Hyun-Sang;Park, Yun-Sik;Seul, Jung-Min;Kim, Jong-Sook;Lee, Ho-Jin;Park, Soon-Heum
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2711-2716
    • /
    • 2011
  • para-Substituted phenoxide derivatives of Pd(II) having an NCN pincer, Pd(NCN)($OC_6H_4$-p-X) (NCN = 2,6-$(CH_2NMe_2)_2C_6H_3$; X = $NO_2$ (1), Me (2)) were prepared by the reaction of Pd(NCN)($OSO_2CF_3$) with equi-molar amount of $NaOC_6H_4$-p-X. Treatment of Pd(NCN)($OSO_2CF_3$) with an excess amount of $NaOC_6H_4$-p-Me affords the hydrogen-bonding adduct complex 3 ($2{\cdot}HOC_6H_4$-p-Me). Complex 3 can also be obtained from benzene solution of 2 in the presence of free $HOC_6H_4$-p-Me. Complex 1 does not undergo adduct formation with $HOC_6H_4-p-NO_2$ neither from metathesis reaction of Pd(NCN)($OSO_2CF_3$) with an excess amount of $NaOC_6H_4-p-NO_2$ nor from treatment of 1 with free $HOC_6H_4-p-NO_2$. Complex 3 undergoes fast exchange of the coordinated p-cresolate with the hydrogen-bonding p-cresol. Complex 2 undergoes ${\sigma}$-ligand exchange reaction with $HOC_6H_4-p-NO_2$ to give 1. The exchange reaction, however, is irreversible as readily anticipated from their respective $pK_a$ values of the phenol derivatives. Reaction of 2 with diphenyliodium chloride quantitatively produced Pd(NCN)Cl and PhI along with liberation of O-phenylated product $PhOC_6H_4$-p-Me which was identified by GC/MS spectroscopy.

Electronic and Magnetic Structure Calculations of Diiron Enzymes (이중 철 효소의 전자구조 및 자기구조 계산)

  • Park, Key Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.106-110
    • /
    • 2015
  • We have studied electronic and magnetic structure of 2 kinds of diiron molecules using OpenMX method based on density functional method. The calculated density of states of diiron-2 is similar with that of diiron-4 because of equal number of 6 ligand atoms. The calculated total energy with antiferromagnetic spin configuration is lower than those of ferromagnetic configurations for both of them. The exchange interaction J of diiiron-4 between $Fe^{+3}$ atoms is one order larger than that of diiron-2, and the calculated J matches well with the experimental one. That comes from the short distance of Fe-O and the high O 2p energy levels. It derives a strong super exchange interaction. The angle of diiron-4 between Fe atoms is bigger than that of diiron-2. It also derives a strong super exchange interaction because of the ${\sigma}$-bond between Fe and O atoms.