DOI QR코드

DOI QR Code

Stress Reduction Methods of GFRP/Mg Single Lap Bonded Joints : Finite Element Analysis

GFRP/Mg 단일겹치기 접착 체결부의 응력집중 저감에 관한 연구 : 유한요소해석

  • 김정석 (한국철도기술연구원 철도구조연구실) ;
  • 윤혁진 (한국철도기술연구원 구조연구실) ;
  • 황재연 (한국철도기술연구원 구조연구실)
  • Received : 2010.11.26
  • Accepted : 2011.03.11
  • Published : 2011.04.26

Abstract

In this study, the stress reduction effect was evaluated for GFRP/Mg single lap bonded joints according to six different adherend shapes. Six different types of the single lap joint specimen were modeled and assessed using geometrically nonlinear finite element analysis. Moreover, three dimensional effect of stress distribution for the different adherend shapes was investigated. From the analysis, the dissimilar single lap bonded joint with the normal tapering and without the spew fillet (model 2) showed the highest stress values. In contrast, the peel stress values of both the square ended adherends with the spew fillet (model 3) and the reverse tapered adherends with the spew fillet (model 5) were 65.8% and 65.5% lower than the reference model.

본 연구에서는 GFRP/Mg 단일겹치기 접착 조인트의 접착부재 형상에 따른 응력집중 완화효과를 평가하였다. 이를 위해 6가지 서로 다른 접착부재의 끝단부 형상에 대해 비선형 유한요소 해석을 수행하였다. 또한, 서로 다른 끝단부 형상에 따른 접착층내 응력의 3차원 구 배를 고찰하였다. 해석결과, 접착부재가 순방향 테이퍼를 갖고 필렛이 없는 모델 (모델 2번)이 가장 높은 응력 값을 보였다. 반면, 사각형 접착부재에 필렛이 부과된 모델 (모델 3번)과 역방향 테이퍼를 갖고 필렛이 부과된 모델 (모델 5번)은 기준모델에 비해 65.7%와 65.6%의 응력저감 효과가 있었다.

Keywords

References

  1. M. White (1998) On the time-reversed electromagnetic waves, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 7(4), pp. 13-15.
  2. P. Mai, Y. Lu (2006) Dynamic modeling for a rolling coin, Journal of Sound and Vibration, 48(6), pp. 753-780.
  3. A.Y.T. Leung, X. Guo, X.Q. He, S. Kitipornchai, S. (2004) A continuum model for zigzag carbon nanotubes, Applied Physics Letters, 86(3), pp. 551-561.
  4. H. Kim, C.H. Park, K.H. Law, C.R. Farrar, et al. (2005) Damage detection in composite plates by using the time reversal method, Journal of the Korean Society for Railway, 10(3), pp. 141-151.
  5. I.A. Viktorov (1967) Rayleigh and Lamb Waves in Plates: Theory and Applications, Plenum Press, NY, pp. 442-443.
  6. H.M. Ashley (2008) Vibration of circular plates, PhD Thesis, Stanford University.
  7. V. Rose, L. Bao (2007) Vibration of the plate with a hole, Proceedings of the 25th ASCE International Civil Engineering Congress, New Orleans, LA, pp. 47-52.
  8. T.W. Steele (2001) Electrical properties of ceramics, University of Southampton, ISVR Memorandum ISAV 101.
  9. M. Petyt (2005) Measurement process of plate vibration, U.S. Patent No. 2,043,416.