DOI QR코드

DOI QR Code

3중 모드 DC-DC 벅 변환기 설계

Design of a Tripple-Mode DC-DC Buck Converter

  • Yu, Seong-Mok (Dept. of Electronics Engineering, University of Incheon) ;
  • Park, Joon-Ho (Dept. of Electronics Engineering, University of Incheon) ;
  • Park, Jong-Tae (Dept. of Electronics Engineering, University of Incheon) ;
  • Yu, Chong-Gun (Dept. of Electronics Engineering, University of Incheon)
  • 투고 : 2011.06.02
  • 발행 : 2011.06.30

초록

본 논문에서는 3중 모드 고효율 DC-DC 벅 변환기를 설계하였다. 설계된 벅 변환기는 부하 전류가 큰 경우(100mA~500mA)에는 PWM(Pulse Width Modulation) 제어 방식을 사용하고, 부하 전류가 작은 경우(1mA~100mA)에는 PFM(Pulse Frequency Modulation) 제어 방식을 사용하며, 부하 전류가 1mA 이하인 대기모드(sleep mode)에서는 LDO(Low Drop Out)를 사용한다. 또한, PFM 모드에서 부하 전류가 작은 경우 효율을 증가시키기 위해 DPSS(Dynamic Partial Shutdown Strategy) 기법을 사용하였다. 그 결과 설계된 변환기는 넓은 부하 전류 범위에서 높은 효율을 얻을 수 있다. 제안된 벅 변환기는 CMOS 0.18um공정을 이용하여 설계되었다. 최대 효율은 96.4% 이고, 최대 부하 전류는 500mA이다. 입력과 출력 전압은 각각 3.3V와 2.5V이며, 칩 크기는 PAD를 포함하여 1.15mm ${\times}$ 1.10mm이다.

This paper describes a tripple-mode high-efficiency DC-DC buck converter. The DC-DC buck converter operate in PWM(Pulse Width Modulation) mode at moderate to heavy loads(100mA~500mA), in PFM(Pulse Frequency Modulation)at light loads(1mA~100mA), and in LDO(Low Drop Out) mode at the sleep mode(<1mA). In PFM mode DPSS(Dynamic Partial Shutdown Strategy) is also employed to increase the efficiency at light loads. The triple-mode converter can thus achieve high efficiencies over wide load current range. The proposed DC-DC converter is designed in a CMOS 0.18um technology. It has a maximum power efficiency of 96.4% and maximum output current of 500mA. The input and output voltages are 3.3V and 2.5V, respectively. The chip size is 1.15mm ${\times}$ 1.10mm including pads.

키워드

참고문헌

  1. C. F. Lee, P. K. T. Mok, "A Monolithic Current-Mode CMOS DC-DC converter with on-chip current-sensing technique," IEEE JSSC, vol. 39, no. 1, pp 3-14, Jan. 2004.
  2. Y. T. Chen, C. H. Chen, "A DC-DC buck converter chip with integrated PWM/PFM hybrid-mode control circuit," International Conference on PEDS 2009, pp. 181-186, Nov. 2009.
  3. F. F. Ma, W. Z. Chen, J. C. Wu, "A Monolithic Current-Mode Buck Converter With Advanced Control and Protection Circuits," IEEE Transactions on Power Electronics, vol. 22, no. 5, pp 1836-1846, 2007. https://doi.org/10.1109/TPEL.2007.904237
  4. C. J. Hsu, Y. S. Lee, "Current Mode Control Integrated Circuit with High Accuracy Current Sensing Circuit for Buck Converter," IECON, pp 1924-1929, 2007.
  5. J. J. Chen, F. C. Yang, C. C. Chen, "A New Monolithic Fast-Response Buck Converter Using Spike-Reduction Current-Sensing Circuits," IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp 1101-1111, 2008.
  6. P. Y. Wu, P. K. T. Mok, "A Monolithic Buck Converter With Near-Optimum Reference Tracking Response Using Adaptive-Output -Feedback," IEEE Journal of Solid-State Circuits, vol. 42, no. 11, pp 2441-2450, 2007. https://doi.org/10.1109/JSSC.2007.907169
  7. W. R. Liou, M. L. Yeh, Y. L. Kuo, "A High Efficiency Dual-Mode Buck Converter IC For Portable Applications," IEEE Transactions on Power Electronics, vol. 23, no. 2, pp 667-677, 2008.
  8. R. Modak, and M. S. Baghini, "A Generic Analytical Model of Switching Characteristics for Efficiency-Oriented Design and Optimization of CMOS Integrated Buck Converters," IEEE ICIT, pp. 1-6, 2009.
  9. K. H. Cheng, C. W. Su, H. H. Ko, "A High -Accuracy and High-Efficiency on-Chip Current Sensing for Current-Mode Control CMOS DC-DC Buck Converter," Electronics, Circuits and Systems, pp 458-461, 2008.
  10. TPS62220DDCR, 400mA, 1.25-MHz, High -Efficiency, Step-down converter, TI, http://www.devicemart.co.kr/mart7/mall.php?cat=0 01014005&query=view&no=38681