DOI QR코드

DOI QR Code

Measurement System for Performance Evaluation of Acoustic Materials in a Small Water Tank

소형수조에서 음향재료의 반향음감소와 투과손실 측정시스템 구성

  • Received : 2010.12.02
  • Accepted : 2011.02.17
  • Published : 2011.02.28

Abstract

Since the detection probability is critically dependent on the target strength (TS) in active sonar and on the radiated noise level (RNL) in passive sonar, the acoustic materials for echo reduction (ER) and transmission loss (TL) are widely used for the stealth of underwater targets. In this paper, a measurement system based on the small water tank, for the frequency range of greater than 30 kHz, is developed and verified using reference targets. In order to design the water tank and the geometry of test samples, a program is developed to calculate the arrival time of interfering signals due to the reflection from water tank walls and also due to the diffraction from the edge of the test samples. Considering all the interfering signals, an optimal experimental configuration for water tank and test samples is designed and used throughout the experiment. Next, the signal processing algorithms to estimate ER and TL are developed based on the measured propagation loss reflecting the geometric spreading characteristics of the transducer. Finally, a set of reference targets such as aluminium plate and perfectly reflecting plate are used in a small water tank to verify the developed measurement system.

본 논문은 반향음과 투과음을 감소시키기 위한 평판형 음향재료의 성능평가 장치를 제작하고 측정시스템을 구성하며 표준표적을 이용한 검증을 통해 신뢰성을 확보하는 데 목적이 있다. 반향음감소와 투과손실 측정은 신호간섭이 없도록 대형수조에서 실시되는 것이 일반적이지만, 본 논문에서는 신호간섭을 고려해야 하는 소형수조에서 최저 30 kHz까지 측정이 가능한 측정시스템을 구성하였다. 이를 위해 신호모의를 통해 신호간섭이 없는 최적의 기하학적 배치를 도출하였으며, 획득한 신호를 시간영역과 주파수영역의 총 네 가지 방법으로 ER과 TL을 도출하는 신호처리 알고리즘을 확립하였다. 마지막으로 대형수조에서의 전파손실 실측실험을 통해 측정시스템을 보정하고 알루미늄 판과 스티로폼을 표준표적으로 사용한 측정결과를 Brekhovskikh Layer Model과 비교하여 측정시스템 검증을 수행하였다.

Keywords

References

  1. Stan Zimmerman, Submarine Technology for the 21st Century, Trafford Publishing, Victoria, 1990.
  2. 정우진, 한승진, 김원호, 신구균, 전재진, "소나 돔 음향창 시편 투과손실 측정/분석 방법 고찰," 한국소음진동공학회논문집, 16권 7호, 729-738쪽, 2006.
  3. E. E. Mikeska and J. A. Behrens, "Evaluation of transducer window materials," J. Acoust. Soc., Am. vol. 59, no. 6, pp. 1294-1298, 1976. https://doi.org/10.1121/1.381017
  4. D. H. Trivett and A. Z. Robinson, "Modified Prony method approach to echo-reduction measurements," J. Acoust. Soc., Am. vol. 70, no. 4, pp. 1166-1175, 1981. https://doi.org/10.1121/1.386948
  5. Anthony J. Rudgers and Christine A. Solvoid, "Apparatusindependent acoustical-material characteristics," J. Acoust. Soc., Am. vol. 76, no. 3, pp. 926-934, 1984. https://doi.org/10.1121/1.391319
  6. J. C, Piquette, "Technique for detecting the presence of finite sample-size effect in transmitted-wave measurement made on multilayer underwater acoustic panels," J. Acoust. Soc., Am. vol. 90, no. 5, pp. 2831-1361, 1991. https://doi.org/10.1121/1.401880
  7. R. J. Bobber, Underwater Electroacoustic Measurements, Chap.6, pp. 287-294, Naval Research Laboratory, Washington, D.C., 1970.
  8. Victor F. Humphrey, Stephen P. Robinson, John D. Smith, Michael J. Martin, Graham A. Beamiss, Gary Hayman and Nicholas L. Carroll, "Acoustic characterization of panel materials under simulated ocean conditions using a parametric array source," J. Acoust. Soc., Am. vol. 124, no. 2, pp. 803-814, 2008. https://doi.org/10.1121/1.2945119
  9. R. J. Urick, Principles of Underwater Sound, 3rd ed., Chap.9, pp. 291-293, McGraw-Hill Book Company, New York, 1983.
  10. R. J. Bobber, Underwater Electroacoustic Measurements, Chap.6, pp. 24-26, Naval Research Laboratory, Washington, D.C., 1970.
  11. L. M. Brekhovskikh, Waves in Layered Media, Chap.1, pp. 1-78, Academic Press, Inc., New York, 1960.