DOI QR코드

DOI QR Code

Comparison of gene expression profiles of human dental pulp cells treated with mineral trioxide aggregate and calcium hydroxide

인간치수세포에 Mineral Trioxide Aggregate와 수산화칼슘 제재 적용 시 유전자 발현 양상 비교

  • Kim, Yong-Beom (Program in Conservative Dentistry, Seoul National University Graduate School) ;
  • Shon, Won-Jun (Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute) ;
  • Lee, Woo-Cheol (Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute) ;
  • Kum, Kee-Yeon (Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute) ;
  • Baek, Seung-Ho (Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute) ;
  • Bae, Kwang-Shik (Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute)
  • 김용범 (서울대학교 치의학대학원 치과보존학교실) ;
  • 손원준 (서울대학교 치의학대학원 치과보존학교실) ;
  • 이우철 (서울대학교 치의학대학원 치과보존학교실) ;
  • 금기연 (서울대학교 치의학대학원 치과보존학교실) ;
  • 백승호 (서울대학교 치의학대학원 치과보존학교실) ;
  • 배광식 (서울대학교 치의학대학원 치과보존학교실)
  • Received : 2011.07.20
  • Accepted : 2011.08.21
  • Published : 2011.09.30

Abstract

Objectives: This study investigated changes in gene expressions concerning of differentiation, proliferation, mineralization and inflammation using Human-8 expression bead arrays when white Mineral Trioxide Aggregate and calcium hydroxide-containing cement were applied in vitro to human dental pulp cells (HDPCs). Materials and Methods: wMTA (white ProRoot MTA, Dentsply) and Dycal (Dentsply Caulk) in a Teflon tube (inner diameter 10 mm, height 1 mm) were applied to HDPCs. Empty tube-applied HDPCs were used as negative control. Total RNA was extracted at 3, 6, 9 and 24 hr after wMTA and Dycal application. The results of microarray were confirmed by reverse transcriptase polymerase chain reaction. Results: Out of the 24,546 genes, 43 genes (e.g., BMP2, FOSB, THBS1, EDN1, IL11, COL10A1, TUFT1, HMOX1) were up-regulated greater than two-fold and 25 genes (e.g., SMAD6, TIMP2, DCN, SOCS2, CEBPD, KIAA1199) were down-regulated below 50% by wMTA. Two hundred thirty nine genes (e.g., BMP2, BMP6, SMAD6, IL11, FOS, VEGFA, PlGF, HMOX1, SOCS2, CEBPD, KIAA1199) were up-regulated greater than two-fold and 358 genes (e.g., EDN1, FGF) were down-regulated below 50% by Dycal. Conclusions: Both wMTA and Dycal induced changes in gene expressions related with differentiation and proliferation of pulp cells. wMTA induced changes in gene expressions related with mineralization, and Dycal induced those related with angiogenesis. The genes related with inflammation were more expressed by Dycal than by wMTA. It was confirmed that both wMTA and Dycal were able to induce gene expression changes concerned with the pulp repair in different ways.

연구목적: 이 연구에서는 mineral trioxide aggregate 제재인 white ProRoot MTA (wMTA)와 수산화칼슘 제재인 Dycal을 인간치수세포에 적용한 후 치수세포의 분화와 증식, 석회화, 신생혈관형성(angiogenesis) 그리고 염증에 관여하는 유전자들의 발현 변화를 비교하였다. 연구 재료 및 방법: 실험군은 wMTA와 Dycal을 테플론 튜브(내경 10 mm, 길이 1 mm)에 담아 4시간 경화시킨 후 일차세포배양한 인간치수세포에 적용하였고, 대조군은 빈 튜브만을 적용하였다. 3시간, 6시간, 9시간, 24시간 후 total RNA를 추출하고 oligonucleotide microarray 방법을 통하여 유전자 발현 양상을 분석하였다. 위의 결과를 역전사 중합효소 연쇄반응(reverse transcriptase polymerase chain reaction)으로 재확인하였다. 결과: wMTA를 적용한 실험군에서 24,546개의 유전자 중 43개 유전자의 발현이 2배 이상 증가하였으며(예. BMP2, FOSB, THBS1, EDN1, IL11, COL10A1, TUFT1, HMOX1) 25개 유전자의 발현이 50% 이하로 감소하였다(예. SMAD6, TIMP2, DCN, SOCS2, CEBPD, KIAA1199). Dycal을 적용한 실험군에서 239개 유전자의 발현이 2배 이상 증가하였으며(예. BMP2, BMP6, SMAD6, IL11, FOS, VEGFA, PlGF, HMOX1, SOCS2, CEBPD, KIAA1199) 358개 유전자의 발현이 50% 이하로 감소하였다(예. EDN1, FGF). 결론: wMTA를 적용한 치수세포에서는 분화와 증식 그리고 석회화에 관여하는 유전자들의 변화가 관찰되었다. Dycal을 적용한 치수세포에서는 분화와 증식 그리고 신생혈관형성에 관여하는 유전자들의 변화가 관찰되었다. 또 Dycal이 염증에 관여하는 유전자들을 더 많이 발현시키는 양상을 보였다.

Keywords

References

  1. American Association of Endodontists. Glossary of endodontic terms, 7th ed. pp 40 2003.
  2. Cox CF, Su¨bay RK, Ostro E, Suzuki S, Suzuki SH. Tunnel defects in dentin bridges: their formation following direct pulp capping. Oper Dent 1996;21:4-11.
  3. Cox CF, Hafez AA, Akimoto N, Otsuki M, Suzuki S, Tarim B. Biocompatibility of primer, adhesive and resin composite systems on non-exposed and exposed pulps of non-human primate teeth. Am J Dent 1998; 11(Supplement):55-63.
  4. Cox CF, Tarim B, Kopel H, Gu¨rel G, Hafez A. Technique sensitivity: biological factors contributing to clinical success with various restorative materials. Adv Dent Res 2001;15:85-90. https://doi.org/10.1177/08959374010150012301
  5. Yun YR, Yang IS, Hwang YC, Hwang IN, Choi HR, Yoon SJ, Kim SH, Oh WM. Pulp response of mineral trioxide aggregate, calcium sulfate or calcium hydroxide. J Kor Acad Cons Dent 2007;32:95-101. https://doi.org/10.5395/JKACD.2007.32.2.095
  6. Bae JH, Kim YG, Yoon PY, Cho BH, Choi YH. Pulp response of beagle dog to direct pulp capping materials: histological study. J Kor Acad Cons Dent 2010;35: 5-12. https://doi.org/10.5395/JKACD.2010.35.1.005
  7. Dominguez MS, Witherspoon DE, Gutmann JL, Opperman LA. Histological and scanning electron microscopy assessment of various vital pulp-therapy materials. J Endod 2003;29:324-333. https://doi.org/10.1097/00004770-200305000-00003
  8. Ford TR, Torabinejad M, Abedi HR, Bakland LK, Kariyawasam SP. Using mineral trioxide aggregate as a pulp-capping material. J Am Dent Assoc 1996;127: 1491-1494.
  9. Faraco IM Jr, Holland R. Response of the pulp of dogs to capping with mineral trioxide aggregate or a calcium hydroxide cement. Dent Traumatol 2001;17:163-166. https://doi.org/10.1034/j.1600-9657.2001.170405.x
  10. Hauman CH, Love RM. Biocompatibility of dental materials used in contemporary endodontic therapy: a review. Part 2. Root canal-filling materials. Int Endod J 2003;36:147-160. https://doi.org/10.1046/j.1365-2591.2003.00637.x
  11. Aeinehchi M, Eslami B, Ghanbariha M, Saffar AS. Mineral trioxide aggregate (MTA) and calcium hydroxide as pulp-capping agents in human teeth: a preliminary report. Int Endod J 2003;36:225-231. https://doi.org/10.1046/j.1365-2591.2003.00652.x
  12. Accorinte Mde L, Holland R, Reis A, Bortoluzzi MC, Murata SS, Dezan E Jr, Souza V, Alessandro LD. Evaluation of mineral trioxide aggregate and calcium hydroxide cement as pulp-capping agents in human teeth. J Endod 2008;34:1-6.
  13. Iwamoto CE, Adachi E, Pameijer CH, Barnes D, Romberg EE, Jeffries S. Clinical and histological evaluation of white ProRoot MTA in direct pulp capping. Am J Dent 2006;19:85-90.
  14. Yasuda Y, Ogawa M, Arakawa T, Kadowaki T, Saito T. The effect of mineral trioxide aggregate on the mineralization ability of rat dental pulp cells: an in vitro study. J Endod 2008;34:1057-1060. https://doi.org/10.1016/j.joen.2008.06.007
  15. Andelin WE, Shabahang S, Wright K, Torabinejad M. Identification of hard tissue after experimental pulp capping using dentin sialoprotein (DSP) as a marker. J Endod 2003;29:646-650. https://doi.org/10.1097/00004770-200310000-00008
  16. Kuratate M, Yoshiba K, Shigetani Y, Yoshiba N, Ohshima H, Okiji T. Immunohistochemical analysis of nestin, osteopontin, and proliferating cells in the reparative process of exposed dental pulp capped with mineral trioxide aggregate. J Endod 2008;34:970-974. https://doi.org/10.1016/j.joen.2008.03.021
  17. Min KS, Yang SH, Kim EC. The combined effect of mineral trioxide aggregate and enamel matrix derivative on odontoblastic differentiation in human dental pulp cells. J Endod 2009;35:847-851. https://doi.org/10.1016/j.joen.2009.03.014
  18. Shi S, Robey PG, Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone 2001;29:532-539. https://doi.org/10.1016/S8756-3282(01)00612-3
  19. McLachlan JL, Smith AJ, Bujalska IJ, Cooper PR. Gene expression profiling of pulpal tissue reveals the molecular complexity of dental caries. Biochim Biophys Acta 2005;1741:271-281. https://doi.org/10.1016/j.bbadis.2005.03.007
  20. Syudo M, Yamada S, Yanagiguchi K, Matsunaga T, Hayashi Y. Early gene expression analyzed by a genome microarray and real-time PCR in osteoblasts cultured with a 4-META/MMA-TBB adhesive resin sealer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:e77-81. https://doi.org/10.1016/j.tripleo.2008.10.020
  21. Martinez ZR, Naruishi K, Yamashiro K, Myokai F, Yamada T, Matsuura K, Namba N, Arai H, Sasaki J, Abiko Y, Takashiba S. Gene profiles during root canal treatment in experimental rat periapical lesions. J Endod 2007;33:936-943. https://doi.org/10.1016/j.joen.2007.04.016
  22. Yokose S, Kadokura H, Tajima Y, Fujieda K, Katayama I, Matsuoka T, Katayama T. Establishment and characterization of a culture system for enzymatically released rat dental pulp cells. Calcif Tissue Int 2000; 66:139-144. https://doi.org/10.1007/s002230010028
  23. Kim YB, Shon WJ, Lee WC, Kum KY, Baek SH, Bae KS. Gene Expression Profiling in Human Dental Pulp Cells Treated with Mineral Trioxide Aggregate. J Kor Acad Cons Dent 35:152-163, 2010. https://doi.org/10.5395/JKACD.2010.35.3.152
  24. Goldberg M, Six N, Decup F, Lasfargues JJ, Salih E, Tompkins K, Veis A. Bioactive molecules and the future of pulp therapy. Am J Dent 2003:16;66-76.
  25. Almushayt A, Narayanan K, Zaki AE, George A. Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Ther 2006;13:611-620. https://doi.org/10.1038/sj.gt.3302687
  26. Goldberg M, Farges JC, Lacerda-Pinheiro S, Six N, Jegat N, Decup F, Septier D, Carrouel F, Durand S, Chaussain-Miller C, Denbesten P, Veis A, Poliard A. Inflammatory and immunological aspects of dental pulp repair. Pharmacol Res 2008;58:137-147. https://doi.org/10.1016/j.phrs.2008.05.013
  27. Reddi AH. Bone morphogenetic proteins: an unconventional approach to isolation of first mammalian morphogens. Cytokine Growth Factor Rev 1997;8:11-20. https://doi.org/10.1016/S1359-6101(96)00049-4
  28. Gu K, Smoke RH, Rutherford RB. Expression of genes for bone morphogenetic proteins and receptors in human dental pulp. Arch Oral Biol 1996;41:919-923. https://doi.org/10.1016/S0003-9969(96)00052-0
  29. Nakashima M, Nagasawa H, Yamada Y, Reddi AH. Regulatory role of transforming growth factor-$\beta$, bone morphogenetic protein-2, and protein-4 on gene expression of extracellular matrix proteins and differentiation of dental pulp cells. Dev Biol 1994;162:18-28. https://doi.org/10.1006/dbio.1994.1063
  30. Saito T, Ogawa M, Hata Y, Bessho K. Acceleration effect of human recombinant bone morphogenetic protein- 2 on differentiation of human pulp cells into odontoblasts. J Endod 2004;30:205-208. https://doi.org/10.1097/00004770-200404000-00005
  31. Yasuda Y, Ogawa M, Arakawa T, Kadowaki T, Saito T. The effect of mineral trioxide aggregate on the mineralization ability of rat dental pulp cells: an in vitro study. J Endod 2008;34:1057-1060. https://doi.org/10.1016/j.joen.2008.06.007
  32. Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop Relat Res 1998;346:26-37.
  33. Takeda K, Oida S, Goseki M, Iimura T, Maruoka Y, Amagasa T, Sasaki S. Expression of bone morphogenetic protein genes in the human dental pulp cells. Bone 1994;15:467-470. https://doi.org/10.1016/8756-3282(94)90268-2
  34. Zhang Q, Wang X, Chen Z, Liu G, Chen Z. Semi-quantitative RT-PCR analysis of LIM mineralization protein 1 and its associated molecules in cultured human dental pulp cells. Arch Oral Biol 2007;52:720-726. https://doi.org/10.1016/j.archoralbio.2007.02.005
  35. Matsui S, Takeuchi H, Tsujimoto Y, Matsushima K. Effects of Smads and BMPs induced by Ga-Al-As laser irradiation on calcification ability of human dental pulp cells. J Oral Sci 2008;50:75-81. https://doi.org/10.2334/josnusd.50.75
  36. Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K. Smad6 inhibits signaling by the TGF-$\beta$ superfamily. Nature 1997;389:622-626. https://doi.org/10.1038/39355
  37. Lawler J. The functions of thrombospondin-1 and-2. Curr Opin Cell Biol 2000;12:634-640. https://doi.org/10.1016/S0955-0674(00)00143-5
  38. Murphy-Ullrich JE, Schultz-Cherry S, Hook M. Transforming growth factor-beta complexes with thrombospondin. Mol Biol Cell 1992;3:181-188. https://doi.org/10.1091/mbc.3.2.181
  39. Ueno A, Yamashita K, Nagata T, Tsurumi C, Miwa Y, Kitamura S, Inoue H. cDNA cloning of bovine thrombospondin 1 and its expression in odontoblasts and predentin. Biochim Biophys Acta 1998;1382:17-22. https://doi.org/10.1016/S0167-4838(97)00188-X
  40. Neuhaus SJ, Byers MR. Endothelin receptors and endothelin-1 in developing rat teeth. Arch Oral Biol 2007;52:655-662. https://doi.org/10.1016/j.archoralbio.2006.12.022
  41. Yan Y, Liu Z, Zhang WG. In vitro study of the effects of endothelin-1 on human dental pulp cells. Chin J Dent Res 1999;2:5-13.
  42. Suga K, Saitoh M, Fukushima S, Takahashi K, Nara H, Yasuda S, Miyata K. Interleukin-11 induces osteoblast differentiation and acts synergistically with bone morphogenetic protein-2 in C3H10T1/2 cells. J Interferon Cytokine Res 2001;21:695-707. https://doi.org/10.1089/107999001753124435
  43. Takeuchi Y, Watanabe S, Ishii G, Takeda S, Nakayama K, Fukumoto S, Kaneta Y, Inoue D, Matsumoto T, Harigaya K, Fujita T. Interleukin-11 as a stimulatory factor for bone formation prevents bone loss with advancing age in mice. J Biol Chem 2002;277:49011-49018. https://doi.org/10.1074/jbc.M207804200
  44. Takayanaqi H, Kim S, Koqa T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclast. Dev Cell 2002;3:889-901. https://doi.org/10.1016/S1534-5807(02)00369-6
  45. Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, Wagner EF. C-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 1994;266:443-448. https://doi.org/10.1126/science.7939685
  46. Grigoriadis AE, Schellander K, Wang ZQ, Wagner EF. Osteoblasts are target cells for transformation in c-fos transgenic mice. J Cell Biol 1993;122:685-701. https://doi.org/10.1083/jcb.122.3.685
  47. Gruda MC, van Amsterdam J, Rizzo CA, Durham SK, Lira S, Bravo R. Expression of FosB during mouse development: normal development of FosB knockout mice. Oncogene 1996;12:2177-2185.
  48. Smith AJ, Murray PE, Lumley PJ. Preserving the vital pulp in operative dentistry: 1. a biological approach. Dent Update 2002;29:64-69. https://doi.org/10.12968/denu.2002.29.2.64
  49. Keyt BA, Nguyen HV, Berleau LT, Duarte CM, Park J, Chen H, Ferrara N. Identification of vascular endothelial growth factor determinants for binding KDR and Flt-1 receptors: generation of receptorselective VEGF variants by site-directed mutagenesis. J Biol Chem 1996;271:5638-5646. https://doi.org/10.1074/jbc.271.10.5638
  50. Matsushita K, Motani R, Sakuta T, Yamaguchi N, Koga T, Matsuo K, Nagaoka S, Abeyama K, Maruyama I, Torii M. The role of vascular endothelial growth factor in human dental pulp cells: induction of chemotaxis, proliferation, and differentiation and activation of the AP-1-dependent signaling pathway. J Dent Res 2000;79:1596-1603. https://doi.org/10.1177/00220345000790081201
  51. Roberts-Clark DJ, Smith AJ. Angiogenic growth factors in human dentine matrix. Arch Oral Biol 2000;45: 1013-1016. https://doi.org/10.1016/S0003-9969(00)00075-3
  52. Ribatti D. The crucial role of vascular permeability factor/vascular endothelial growth factor in angiogenesis: a historical review. Br J Haematol 2005;128:303-309. https://doi.org/10.1111/j.1365-2141.2004.05291.x
  53. Heissig B, Hattori K, Friedrich M, Rafii S, Werb Z. Angiogenesis: vascular remodeling of the extracellular matrix involves metalloproteinases. Curr Opin Hematol 2003;10:136-141. https://doi.org/10.1097/00062752-200303000-00007
  54. Seo DW, Li H, Guedez L, Wingfield PT, Diaz T, Salloum R, Wei BY, Stetler-Stevenson WG. TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell 2003;114:171-180. https://doi.org/10.1016/S0092-8674(03)00551-8
  55. Murphy AN, Unsworth EJ, Stetler-Stevenson WG. Tissue inhibitor of metalloproteinases-2 inhibits bFGFinduced human microvascular endothelial cell proliferation. J Cell Physiol 1993;157:351-358. https://doi.org/10.1002/jcp.1041570219
  56. Mochida Y, Duarte WR, Tanzawa H, Paschalis EP, Yamauchi M. Decorin modulates matrix mineralization in vitro. Biochem Biophys Res Commun 2003;305:6-9. https://doi.org/10.1016/S0006-291X(03)00693-4
  57. Alini M, Marriott A, Chen T, Abe S, Poole AR. A novel angiogenic molecule produced at the time of chondrocyte hypertrophy during endochondral bone formation. Dev Biol 1996;176:124-132. https://doi.org/10.1006/dbio.1996.9989
  58. Felszeghy S, Hollo′K, Mo′dis L, Lammi MJ. Type X collagen in human enamel development: a possible role in mineralization. Acta Odontol Scand 2000;58:171-176. https://doi.org/10.1080/000163500429172
  59. Deutsch D, Palmon A, Fisher LW, Kolodny N, Termine JD, Young MF. Sequencing of bovine enamelin ("tuftelin") a novel acidic enamel protein. J Biol Chem 1991;266:16021-10628.
  60. Paine CT, Paine ML, Luo W, Okamoto CT, Lyngstadaas SP, Snead ML. A tuftelin-interacting protein (TIP39) localizes to the apical secretory pole of mouse ameloblasts. J Biol Chem 2000;275:22284-22292. https://doi.org/10.1074/jbc.M000118200
  61. Otterbein LE, Choi AE. Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol 2000;279:L1029-1037.
  62. Foresti R, Motterlini R. The heme oxygenase pathway and its interaction with nitric oxide in the control of cellular homeostasis. Free Radic Res 1999;31:459-475. https://doi.org/10.1080/10715769900301031
  63. Min KS, Lee HJ, Kim SH, Lee SK, Kim HR, Pae HO, Chung HT, Shin HI, Lee SK, Kim EC. Hydrogen peroxide induces heme oxygenase-1 and dentin sialophosphoprotein mRNA in human pulp cells. J Endod 2008;34:983-989 https://doi.org/10.1016/j.joen.2008.05.012
  64. Min KS, Kwon YY, Lee HJ, Lee SK, Kang KH, Lee SK, Kim EC. Effects of proinflammatory cytokines on the expression of mineralization markers and heme oxygenase- 1 in human pulp cells. J Endod 2006;32:39-43. https://doi.org/10.1016/j.joen.2005.10.012
  65. Krebs DL, Hilton DJ. SOCS proteins: negative regulators of cytokine signaling. Stem Cells 2001;19:378-387. https://doi.org/10.1634/stemcells.19-5-378
  66. Machado FS, Johndrow JE, Esper L, Dias A, Bafica A, Serhan CN, Aliberti J. Anti-inflammatory actions of lipoxin A(4) and aspirin-triggered lipoxin are SOCS-2 dependent. Nat Med 2006;12:330-334. https://doi.org/10.1038/nm1355
  67. Alexander WS, Hilton DJ. The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annu Rev Immunol 2004;22:503-529. https://doi.org/10.1146/annurev.immunol.22.091003.090312
  68. Menezes R, Garlet TP, Trombone AP, Repeke CE, Letra A, Granjeiro JM, Campanelli AP, Garlet GP. The potential role of suppressors of cytokine signaling in the attenuation of inflammatory reaction and alveolar bone loss associated with apical periodontitis. J Endod 2008;34:1480-1484. https://doi.org/10.1016/j.joen.2008.09.003
  69. Schrem H, Klempnauer J, Borlak J. Liver-enriched transcription factors in liver fuction and development. Part II: The C/EBPs and D site binding protein in cell cycle control, carcinogenesis, circadian gene regulation, liver regulation, apoptosis, and liver-specific gene regulation. Pharmacol Rev 2004;56:291-330. https://doi.org/10.1124/pr.56.2.5
  70. Liu YW, Chen CC, Wang JM, Chang WC, Huang YC, Chung SY, Chen BK, Hung JJ. Role of transcriptional factors Sp1, c-Rel, and c-Jun in LPS-induced C/EBPdelta gene expression of mouse macrophages. Cell Mol Life Sci 2007;64:3282-3294. https://doi.org/10.1007/s00018-007-7375-5
  71. Caivano M, Gorgoni B, Cohen P, Poli V. The induction of cyclooxygenage-2 mRNA in macrophages is biphasic and requires both CCAAT/enhancer-binding protein beta (C/EBP beta) and C/EBP delta transcription factors. J Biol Chem 2001; 276:48693-48701. https://doi.org/10.1074/jbc.M108282200

Cited by

  1. Analysis of gene expression during odontogenic differentiation of cultured human dental pulp cells vol.37, pp.3, 2012, https://doi.org/10.5395/rde.2012.37.3.142