DOI QR코드

DOI QR Code

Rheological characterization of thermoplasticized injectable gutta percha and resilon

열연화주입형 gutta percha와 resilon의 유변학적 특성

  • Chang, Ju-Hea (Clinic for the Disabled, Seoul National University Dental Hospital) ;
  • Baek, Seung-Ho (Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute) ;
  • Lee, In-Bog (Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute)
  • 장주혜 (서울대학교 치과병원 장애인진료실) ;
  • 백승호 (서울대학교 치의학전문대학원 치과보존학교실) ;
  • 이인복 (서울대학교 치의학전문대학원 치과보존학교실)
  • Received : 2011.06.15
  • Accepted : 2011.07.25
  • Published : 2011.09.30

Abstract

Objectives: The purpose of this study was to observe the change in the viscoelastic properties of thermoplasticized injectable root canal filling materials as a function of temperature and to compare the handling characteristics of these materials. Materials and Methods: Three commercial gutta perchas and Resilon (Pentron Clinical Technologies) in a pellet form were heated in the Obtura-II system (Obtura Spartan) at $140^{\circ}C$ and $200^{\circ}C$, and the extrusion temperature of the thermoplasticized materials was measured. The viscoelastic properties of the materials as a function of temperature were evaluated using a rheometer. The elastic modulus G', viscous modulus G", loss tangent tan${\delta}$, and complex viscosity ${\eta}^*$ were determined. The phase transition temperature was determined by both the rheometer and a differential scanning calorimeter (DSC). The consistency of the materials was compared under compacting pressure at $60^{\circ}C$ and $40^{\circ}C$ by a squeeze test. Results: The three gutta perchas had dissimilar profiles in viscoelastic properties with varying temperature. The phase transition of softened materials into solidification occurred at $40^{\circ}C$ to $50^{\circ}C$, and the onset temperatures obtained by a rheometer and a DSC were similar to each other. The onset temperature of phase transition and the consistency upon compaction pressure were different among the materials (p < 0.05). Resilon had a rheologically similar pattern to the gutta perchas, and was featured between high and low-flow gutta perchas. Conclusions: The rheological characteristics of the thermoplasticized root canal filling materials changed under a cooling process. The dissimilar viscoelastic properties among the materials require different handling characteristics during an injecting and compacting procedure.

연구목적: 본 연구의 목적은 열연화주입형 gutta percha와 resilon의 온도 변화에 따른 점탄성 변화를 관찰하고 조작성을 비교하기 위함이다. 연구 재료 및 방법: Obtura-II 시스템을 이용하여 세 종류의 gutta percha와 resilon을 $140^{\circ}C$$200^{\circ}C$로 가열한 후 사출 온도를 측정하였다. 점도계를 이용하여 온도 변화에 따른 재료들의 점탄성 특성(전단탄성계수, G'; 전단점성계수, G"; 손실 탄젠트, tan${\delta}$; 복소점도, ${\eta}^*$)을 관찰하였다. 점도계와 차동주사열측정기(DSC)로 재료들의 상전이 온도를 측정하였고 가압법으로 $60^{\circ}C$$40^{\circ}C$에서 재료들의 점조도를 비교하였다. 결과: 세 종의 gutta perchas는 온도에 따라 서로 다른 점탄성 특성을 나타냈다. $40-50^{\circ}C$에서 연화된 재료의 고체화 상변이가 일어났고, 점도계와 DSC로 측정된 상변이 시작 온도는 유사하였다. 상변이 시작 온도와 가압 시 점조도는 재료들마다 차이를 보였다(p < 0.05). Resilon은 gutta percha와 비슷한 유변학적 특성을 보였다. 결론: 열연화된 근관충전재는 냉각과정 동안 유변학적 특성의 변화를 나타냈고 재료들마다 서로 다른 점탄성 특성은 근관 내주입 시와 충전 시 서로 다른 조작성을 보임을 알 수 있다.

Keywords

References

  1. Miner MR, Berzins DW, Bahcall JK. A comparison of thermal properties between gutta-percha and a synthetic polymer based root canal filling material (Resilon). J Endod 2006;32:683-686. https://doi.org/10.1016/j.joen.2006.01.008
  2. Schilder H. Filling root canals in three dimensions. Dent Clin North Am 1967:723-744.
  3. Karabucak B, Kim A, Chen V, Iqbal MK. The comparison of gutta-percha and Resilon penetration into lateral canals with different thermoplastic delivery systems. J Endod 2008;34:847-849. https://doi.org/10.1016/j.joen.2008.03.024
  4. Combe EC, Cohen BD, Cummings K. Alpha- and betaforms of gutta-percha in products for root canal filling. Int Endod J 2001;34:447-451. https://doi.org/10.1046/j.1365-2591.2001.00415.x
  5. Elzubair A, Elias CN, Suarez JC, Lopes HP, Vieira MV. The physical characterization of a thermoplastic polymer for endodontic obturation. J Dent 2006;34: 784-789. https://doi.org/10.1016/j.jdent.2006.03.002
  6. Nielsen BA, Baumgartner JC. Spreader penetration during lateral compaction of resilon and gutta-percha. J Endod 2006;32:52-54. https://doi.org/10.1016/j.joen.2005.10.011
  7. Lee IB, Cho BH, Son HH, Um CM. Rheological characterization of composites using a vertical oscillation rheometer. Dent Mater 2007;23:425-432. https://doi.org/10.1016/j.dental.2006.02.013
  8. Venturi M, Di Lenarda R, Breschi L. An ex vivo comparison of three different gutta-percha cones when compacted at different temperatures: rheological considerations in relation to the filling of lateral canals. Int Endod J 2006;39:648-656. https://doi.org/10.1111/j.1365-2591.2006.01133.x
  9. Alicia Karr N, Baumgartner JC, Marshall JG. A comparison of gutta-percha and Resilon in the obturation of lateral grooves and depressions. J Endod 2007;33: 749-752. https://doi.org/10.1016/j.joen.2007.02.017
  10. Venturi M, Pasquantonio G, Falconi M, Breschi L. Temperature change within gutta-percha induced by the System-B Heat Source. Int Endod J 2002;35:740-746. https://doi.org/10.1046/j.1365-2591.2002.00553.x
  11. Tsukada G, Tanaka T, Torii M, Inoue K. Shear modulus and thermal properties of gutta percha for root canal filling. J Oral Rehabil 2004;31:1139-1144. https://doi.org/10.1111/j.1365-2842.2004.01349.x
  12. Gurgel-Filho ED, Andrade Feitosa JP, Teixeira FB, Monteiro de Paula RC, Araujo Silva JB, Souza-Filho FJ. Chemical and X-ray analyses of five brands of dental gutta-percha cone. Int Endod J 2003;36:302-307. https://doi.org/10.1046/j.1365-2591.2003.00653.x
  13. Williams C, Loushine RJ, Weller RN, Pashley DH, Tay FR. A comparison of cohesive strength and stiffness of Resilon and gutta-percha. J Endod 2006;32:553-555. https://doi.org/10.1016/j.joen.2005.08.002
  14. Gurgel-Filho ED, Feitosa JP, Gomes BP, Ferraz CC, Souza-Filho FJ, Teixeira FB. Assessment of different gutta-percha brands during the filling of simulated lateral canals. Int Endod J 2006;39:113-118. https://doi.org/10.1111/j.1365-2591.2006.01054.x
  15. Lee JH, Um CM, Lee IB. Rheological properties of resin composites according to variations in monomer and filler composition. Dent Mater 2006;22:515-526. https://doi.org/10.1016/j.dental.2005.05.008
  16. Schilder H, Goodman A, Aldrich W. The thermomechanical properties of gutta-percha. 3. Determination of phase transition temperatures for gutta-percha. Oral Surg Oral Med Oral Pathol 1974;38:109-114. https://doi.org/10.1016/0030-4220(74)90321-1
  17. Kolokuris I, Arvanitoyannis I, Blanshard JM, Robinson C. Thermal analysis of commercial Gutta-percha using differential scanning calorimeter and dynamic mechanical thermal analysis. J Endod 1992;18:4-9. https://doi.org/10.1016/S0099-2399(06)81134-9

Cited by

  1. Temperature-dependent rheological property changes of thermoplastic gutta-percha root filling materials vol.48, pp.6, 2014, https://doi.org/10.1111/iej.12349