DOI QR코드

DOI QR Code

Early caries detection using optical coherence tomography: a review of the literature

광간섭단층촬영술을 이용한 치아우식증의 발견

  • Park, Young-Seok (Department of Oral Anatomy, Seoul National University School of Dentistry and Dental Research Institute) ;
  • Cho, Byeong-Hoon (Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute) ;
  • Lee, Seung-Pyo (Department of Oral Anatomy, Seoul National University School of Dentistry and Dental Research Institute) ;
  • Shon, Won-Jun (Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute)
  • 박영석 (서울대학교 치의학대학원 구강해부학교실 및 치학연구소) ;
  • 조병훈 (서울대학교 치의학대학원 치과보존학교실 및 치학연구소) ;
  • 이승표 (서울대학교 치의학대학원 구강해부학교실 및 치학연구소) ;
  • 손원준 (서울대학교 치의학대학원 치과보존학교실 및 치학연구소)
  • Received : 2011.07.17
  • Accepted : 2011.08.21
  • Published : 2011.09.30

Abstract

Early detection of carious lesions increases the possibility of treatment without the need for surgical intervention. Optical coherence tomography (OCT) is an emerging three-dimensional imaging technique that has been successfully used in other medical fields, such as ophthalmology for optical biopsy, and is a prospective candidate for early caries detection. The technique is based on low coherence interferometry and is advantageous in that it is non-invasive, does not use ionizing radiation, and can render threedimensional images. A brief history of the development of this technique and its principles are discussed in this paper. There have been numerous studies on caries detection, which were mostly in vitro or ex vivo experiments. Through these studies, the feasibility of OCT for caries detection was confirmed. However, further research should be performed, including in vivo studies of OCT applications, in order to prove the clinical usefulness of this technique. In addition, some technological problems must be resolved in the near future to allow for the use of OCT in everyday practice.

치아우식증의 조기 발견은 외과적 삭제를 피하면서, 적절한 치료를 할 수 있는 좋은 기회를 제공한다. 광간섭단층촬영술은 최근 각광받기 시작한 3차원 이미지 기술로서, 안과에서 광학적 생검의 목적으로 빈번히 이용되는 것을 필두로 다양한 의학 분야에 적용되어 왔고, 최근 초기 우식증의 발견에 전도유망하여 다양한 연구가 진행 중이다. 이 기술은 저 상관도 간섭계의 원리에 근거하고 있으며, 장점으로는 비침습적이고, 방사선을 사용하지 않으며, 3차원 이미지 구축이 가능하다는 점이다. 본 연구에서는 광간섭단층촬영술의 원리와 개략적인 개발 과정에 대한 기술과 함께 치아우식증에 관한 연구들에 대하여 고찰해 보았고, 이를 통해 이 기술의 응용 가능성을 확인하였다. 그럼에도 불구하고, 임상적인 유용성을 입증하기 위해서는 몇 가지 기술적 문제를 해결해야 하고, 보다 많은 생체 내 실험이 뒷받침되어야 할 것이다.

Keywords

References

  1. Pereira AC, Verdonschot EH, Huysmans MC. Caries detection methods: can they aid decision making for invasive sealant treatment? Caries Res 2001;35:83-89. https://doi.org/10.1159/000047437
  2. Shimada Y, Sadr A, Burrow MF, Tagami J, Ozawa N, Sumi Y. Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries. J Dent 2010;38:655-665. https://doi.org/10.1016/j.jdent.2010.05.004
  3. Bader JD, Shugars DA, Bonito AJ. Systematic reviews of selected dental caries diagnostic and management methods. J Dent Educ 2001;65:960-968.
  4. Featherstone JD. The continuum of dental caries-evidence for a dynamic disease process. J Dent Res 2004; (83 Spec No C):C39-42.
  5. Kidd EA, Fejerskov O. What constitutes dental caries? Histopathology of carious enamel and dentin related to the action of cariogenic biofilms. J Dent Res 2004;(83 Spec No C):C35-38. https://doi.org/10.1177/154405910408301S07
  6. Featherstone JD. Prevention and reversal of dental caries: role of low level fluoride. Community Dent Oral Epidemiol 1999;27:31-40. https://doi.org/10.1111/j.1600-0528.1999.tb01989.x
  7. Jones RS, Darling CL, Featherstone JD, Fried D. Imaging artificial caries on the occlusal surfaces with polarization-sensitive optical coherence tomography. Caries Res 2006;40:81-89. https://doi.org/10.1159/000091052
  8. Popescu DP, Sowa MG, Hewko MD, Choo-Smith LP. Assessment of early demineralization in teeth using the signal attenuation in optical coherence tomography images. J Biomed Opt 2008;13:054053. https://doi.org/10.1117/1.2992129
  9. Health NIo. Diagnosis and manangement of dental caries throughout life; National Institutes of Health Consensus Development Conference statement. Diagnosis and management of dental caries throughout life, March 26-28, 2001. J Am Dent Assoc 2001;132: 1153-1161. https://doi.org/10.14219/jada.archive.2001.0343
  10. Bashkansky M, Reintjes J. Statistics and reduction of speckle in optical coherence tomography. Opt Lett 2000;25:545-547. https://doi.org/10.1364/OL.25.000545
  11. Popescu D. Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample. Opt Commun 2006; 269:247-251.
  12. Wojtkowski M. High-speed optical coherence tomography: basics and applications. Appl Opt 2010;49:D30-61. https://doi.org/10.1364/AO.49.000D30
  13. Tomlins PH, Wang RK. Theory, developments and applications of optical coherence tomography J Phys D Appl Phys 2005;38:2519-2535. https://doi.org/10.1088/0022-3727/38/15/002
  14. Fujimoto J. Introduction to optical coherence tomography. In: Drexler W, Fujimoto JG, editors. Optical coherence tomography. Springer 2008. p1-45.
  15. Flournoy PA, McClure RW, Wyntjes G. White-light interferometric thickness gauge. Appl Opt 1972;11: 1907-1915. https://doi.org/10.1364/AO.11.001907
  16. Li T, Wang A, Murphy K, Claus R. White-light scanning fiber Michelson interferometer for absolute position- distance measurement. Opt Lett 1995;20:785-787. https://doi.org/10.1364/OL.20.000785
  17. Maruyama H, Inoue S, Mitsuyama T, Ohmi M, Haruna M. Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness. Appl Opt 2002;41:1315-1322. https://doi.org/10.1364/AO.41.001315
  18. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG. Optical coherence tomography. Science 1991;254:1178-1181. https://doi.org/10.1126/science.1957169
  19. Colston BW Jr, Everett MJ, Da Silva LB, Otis LL, Stroeve P, Nathel H. Imaging of hard-and soft-tissue structure in the oral cavity by optical coherence tomography. Appl Opt 1998;37:3582-3585. https://doi.org/10.1364/AO.37.003582
  20. Tsai MT, Lee HC, Lu CW, Wang YM, Lee CK, Yang CC, Chiang CP. Delineation of an oral cancer lesion with swept-source optical coherence tomography. J Biomed Opt 2008;13:044012. https://doi.org/10.1117/1.2960632
  21. Tsai MT, Lee CK, Lee HC, Chen HM, Chiang CP, Wang YM, Yang CC. Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography. J Biomed Opt 2009;14:044028. https://doi.org/10.1117/1.3200936
  22. Lee CK, Tsai MT, Lee HC, Chen HM, Chiang CP, Wang YM, Yang CC. Diagnosis of oral submucous fibrosis with optical coherence tomography. J Biomed Opt 2009;14:054008. https://doi.org/10.1117/1.3233653
  23. Tsai MT, Lee HC, Lee CK, Yu CH, Chen HM, Chiang CP, Chang CC, Wang YM, Yang CC. Effective indicators for diagnosis of oral cancer using optical coherence tomography. Opt Express 2008;16:15847-15862. https://doi.org/10.1364/OE.16.015847
  24. Wilder-Smith P, Osann K, Hanna N, El Abbadi N, Brenner M, Messadi D, Krasieva T. In vivo multiphoton fluorescence imaging: a novel approach to oral malignancy. Lasers Surg Med 2004;35:96-103. https://doi.org/10.1002/lsm.20079
  25. Wilder-Smith P, Hammer-Wilson MJ, Zhang J, Wang Q, Osann K, Chen Z, Wigdor H, Schwartz J, Epstein J. In vivo imaging of oral mucositis in an animal model using optical coherence tomography and optical Doppler tomography. Clin Cancer Res 2007;13:2449-2454. https://doi.org/10.1158/1078-0432.CCR-06-2234
  26. Wilder-Smith P, Krasieva T, Jung WG, Zhang J, Chen Z, Osann K, Tromberg B. Noninvasive imaging of oral premalignancy and malignancy. J Biomed Opt 2005; 10:051601. https://doi.org/10.1117/1.2098930
  27. Na J, Lee BH, Baek JH, Choi ES. Optical approach for monitoring the periodontal ligament changes induced by orthodontic forces around maxillary anterior teeth of white rats. Med Biol Eng Comput 2008;46:597-603. https://doi.org/10.1007/s11517-007-0300-0
  28. Baek JH, Na J, Lee BH, Choi E, Son WS. Optical approach to the periodontal ligament under orthodontic tooth movement: a preliminary study with optical coherence tomography. Am J Orthod Dentofacial Orthop 2009;135:252-259. https://doi.org/10.1016/j.ajodo.2007.10.037
  29. Simonsohn G. Die Verteilung des Brechungsindex in der Augenlinse. Optik 1969;29:81-86.
  30. Rassow B. The retinal resolving power measured by laser interference fringes. Proc SPIE 1978;164:154-157.
  31. Fercher A. In vivo Measurement of Fundus Pulsations by Laser Interferometry. IEEE J Qu El 1984;20:1469-1471. https://doi.org/10.1109/JQE.1984.1072315
  32. Fercher A. Ophthalmic Laser Interferometry. Proc SPIE 1986;658:48-51.
  33. Fercher AF, Mengedoht K, Werner W. Eye-length measurement by interferometry with partially coherent light. Opt Lett 1988;13:186-188. https://doi.org/10.1364/OL.13.000186
  34. Fercher A. Measurement of intraocular optical distances using partially coherent laser light. JMO 1991; 38:1327-1333. https://doi.org/10.1080/09500349114551491
  35. Huang D, Wang J, Lin CP, Puliafito CA, Fujimoto JG. Micron-resolution ranging of cornea anterior chamber by optical reflectometry. Lasers Surg Med 1991;11: 419-425. https://doi.org/10.1002/lsm.1900110506
  36. Santodomingo-Rubido J, Mallen EA, Gilmartin B, Wolffsohn JS. A new non-contact optical device for ocular biometry. Br J Ophthalmol 2002;86:458-462. https://doi.org/10.1136/bjo.86.4.458
  37. Goyal R, North RV, Morgan JE. Comparison of laser interferometry and ultrasound A-scan in the measurement of axial length. Acta Ophthalmol Scand 2003; 81:331-335. https://doi.org/10.1034/j.1600-0420.2003.00092.x
  38. Hitzenberger CK. Optical measurement of the axial eye length by laser Doppler interferometry. Invest Ophthalmol Vis Sci 1991;32:616-624.
  39. Drexler W, Findl O, Menapace R, Rainer G, Vass C, Hitzenberger CK, Fercher AF. Partial coherence interferometry: a novel approach to biometry in cataract surgery. Am J Ophthalmol 1998;126:524-534. https://doi.org/10.1016/S0002-9394(98)00113-5
  40. Fercher AF. Ophthalmic Interferometry. In: von Bally G, Khanna S, editors. Optics in Medicine, Biology and Environmental Research. Selected Contributions to the First International Conference on Optics Within Life Sciences (OWLS I), Garmisch-Partenkirchen, Germany, 12-16 August 1990 (ICO-15 SAT). Amsterdam, London, New York, Tokyo. Elsevier; 1993. p221-228.
  41. Fercher AF, Hitzenberger CK, Drexler W, Kamp G, Sattmann H. In vivo optical coherence tomography. Am J Ophthalmol 1993;116:113-114.
  42. Swanson EA, Izatt JA, Hee MR, Huang D, Lin CP, Schuman JS, Pulliafito CA, Fujimoto JG. In vivo retinal imaging by optical coherence tomography. Opt Lett 1993;18:1864-1866. https://doi.org/10.1364/OL.18.001864
  43. Tearney GJ, Boppart SA, Bouma BE, Brezinski ME, Weissman NJ, Southern JF, Fujimoto JG. Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography. Opt Lett 1996;21:543-545. https://doi.org/10.1364/OL.21.000543
  44. Raffel OC, Akasaka T, Jang IK. Cardiac optical coherence tomography. Heart 2008;94:1200-1210. https://doi.org/10.1136/hrt.2007.130765
  45. Sivak M. High-resolution endoscopic imaging of the GI tract using optical coherence tomography. Gastrointestin Endosc 2001;54:474-479.
  46. Drexler W. Ultrahigh-resolution optical coherence tomography. J Biomed Opt 2004;9:47-74. https://doi.org/10.1117/1.1629679
  47. Murphy B. The Evolution of Spectral Domain OCT, Ophthalmology Management. In: Ophthalmology Management. Lippincott Williams & Wilkins VisionCare Group 2008.
  48. Smolka G. Optical Coherence Tomograph: technology, markets, and applications 2008-12. In: Biooptics World. Tulsa: PennWell Corp; 2007.
  49. Hee MR, Puliafito CA, Wong C, Duker JS, Reichel E, Schuman JS, Swanson EA, Fujimoto JG. Optical coherence tomography of macular holes. Ophthalmology 1995;102:748-756. https://doi.org/10.1016/S0161-6420(95)30959-1
  50. Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 2002;7:457-463. https://doi.org/10.1117/1.1482379
  51. Yun S, Tearney G, Bouma B, Park B, de Boer J. Highspeed spectral-domain optical coherence tomography at 1.3 mum wavelength. Opt Express 2003;11:3598-3604. https://doi.org/10.1364/OE.11.003598
  52. Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2005;112:1734-1746. https://doi.org/10.1016/j.ophtha.2005.05.023
  53. Wojtkowski M, Srinivasan V, Ko T, Fujimoto J, Kowalczyk A, Duker J. Ultrahigh-resolution, highspeed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express 2004;12:2404-2422. https://doi.org/10.1364/OPEX.12.002404
  54. Nassif N, Cense B, Park B, Pierce M, Yun S, Bouma B, Tearney G, Chen T, de Boer J. In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt Express 2004;12:367-376. https://doi.org/10.1364/OPEX.12.000367
  55. Vaarkamp J, ten Bosch JJ, Verdonschot EH. Light propagation through teeth containing simulated caries lesions. Phys Med Biol 1995;40:1375-1387. https://doi.org/10.1088/0031-9155/40/8/006
  56. Van de Rijke JW, Ten Bosch JJ. Optical quantification of caries-like lesions in vitro by use of a fluorescent dye. J Dent Res 1990;69:1184-1187. https://doi.org/10.1177/00220345900690051201
  57. Hee MR, Huang D, Swanson EA, Fujimoto JG. Polarization-Sensitive Low-Coherence Reflectometer for Birefringence Characterization and Ranging. J Opt Soc Am B Opt Phys 1992;9:903-908. https://doi.org/10.1364/JOSAB.9.000903
  58. de Boer JF, Milner TE, van Gemert MJ, Nelson JS. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett 1997;22:934-936. https://doi.org/10.1364/OL.22.000934
  59. Bohren CF, Nevitt TJ. Absorption by a sphere: a simple approximation. Appl Opt 1983;22:774-775. https://doi.org/10.1364/AO.22.000774
  60. Chinn SR, Swanson EA, Fujimoto JG. Optical coherence tomography using a frequency-tunable optical source. Opt Lett 1997;22:340-342. https://doi.org/10.1364/OL.22.000340
  61. Colston B, Sathyam U, Dasilva L, Everett M, Stroeve P, Otis L. Dental OCT. Opt Express 1998;3:230-238. https://doi.org/10.1364/OE.3.000230
  62. Amaechi BT, Higham SM, Podoleanu AG, Rogers JA, Jackson DA. Use of optical coherence tomography for assessment of dental caries: quantitative procedure. J Oral Rehabil 2001;28:1092-1093. https://doi.org/10.1046/j.1365-2842.2001.00840.x
  63. Amaechi BT, Podoleanu A, Higham SM, Jackson DA. Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries. J Biomed Opt 2003;8:642-647. https://doi.org/10.1117/1.1606685
  64. Amaechi BT, Podoleanu AG, Komarov G, Higham SM, Jackson DA. Quantification of root caries using optical coherence tomography and microradiography: a correlational study. Oral Health Prev Dent 2004;2:377-382.
  65. Fried D, Xie J, Shafi S, Featherstone JD, Breunig TM, Le C. Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography. J Biomed Opt 2002;7:618-627. https://doi.org/10.1117/1.1509752
  66. Jones RS, Staninec M, Fried D. Imaging artificial caries under composite sealants and restorations. J Biomed Opt 2004;9:1297-1304. https://doi.org/10.1117/1.1805562
  67. Ngaotheppitak P, Darling CL, Fried D. Measurement of the severity of natural smooth surface (interproximal) caries lesions with polarization sensitive optical coherence tomography. Lasers Surg Med 2005;37:78-88. https://doi.org/10.1002/lsm.20169
  68. Jones RS, Darling CL, Featherstone JD, Fried D. Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography. J Biomed Opt 2006;11:014016. https://doi.org/10.1117/1.2161192
  69. Jones RS, Fried D. Remineralization of enamel caries can decrease optical reflectivity. J Dent Res 2006;85: 804-808. https://doi.org/10.1177/154405910608500905
  70. Chong SL, Darling CL, Fried D. Nondestructive measurement of the inhibition of demineralization on smooth surfaces using polarization-sensitive optical coherence tomography. Lasers Surg Med 2007;39:422-427. https://doi.org/10.1002/lsm.20506
  71. Can AM, Darling CL, Ho C, Fried D. Non-destructive assessment of inhibition of demineralization in dental enamel irradiated by a lambda=9.3-microm $CO_2$ laser at ablative irradiation intensities with PS-OCT. Lasers Surg Med 2008;40:342-349. https://doi.org/10.1002/lsm.20633
  72. Hsu DJ, Darling CL, Lachica MM, Fried D. Nondestructive assessment of the inhibition of enamel demineralization by $CO_2$ laser treatment using polarization sensitive optical coherence tomography. J Biomed Opt 2008;13:054027. https://doi.org/10.1117/1.2976113
  73. Lee C, Darling CL, Fried D. Polarization-sensitive optical coherence tomographic imaging of artificial demineralization on exposed surfaces of tooth roots. Dent Mater 2009;25:721-728. https://doi.org/10.1016/j.dental.2008.11.014
  74. Manesh SK, Darling CL, Fried D. Nondestructive assessment of dentin demineralization using polarization- sensitive optical coherence tomography after exposure to fluoride and laser irradiation. J Biomed Mater Res B Appl Biomater 2009;90:802-812.
  75. Manesh SK, Darling CL, Fried D. Polarization-sensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin. J Biomed Opt 2009;14:044002. https://doi.org/10.1117/1.3158995
  76. Wu J, Fried D. High contrast near-infrared polarized reflectance images of demineralization on tooth buccal and occlusal surfaces at lambda = 1310-nm. Lasers Surg Med 2009;41:208-213. https://doi.org/10.1002/lsm.20746
  77. Hirasuna K, Fried D, Darling CL. Near-infrared imaging of developmental defects in dental enamel. J Biomed Opt 2008;13:044011. https://doi.org/10.1117/1.2956374
  78. Tao YC, Fried D. Near-infrared image-guided laser ablation of dental decay. J Biomed Opt 2009;14: 054045. https://doi.org/10.1117/1.3253390
  79. Le MH, Darling CL, Fried D. Automated analysis of lesion depth and integrated reflectivity in PS-OCT scans of tooth demineralization. Lasers Surg Med 2010;42:62-68. https://doi.org/10.1002/lsm.20862
  80. Kang H, Jiao JJ, Lee C, Le MH, Darling CL, Fried D. Nondestructive Assessment of Early Tooth Demineralization Using Cross-Polarization Optical Coherence Tomography. IEEE journal of selected topics in quantum electronics: a publication of the IEEE Lasers Electro-opt Soc 2010;16:870-876. https://doi.org/10.1109/JSTQE.2009.2033610
  81. Baumgartner A, Dichtl S, Hitzenberger CK, Sattmann H, Robl B, Moritz A, Fercher AF, Sperr W. Polarization-sensitive optical coherence tomography of dental structures. Caries Res 2000;34:59-69. https://doi.org/10.1159/000016571
  82. Feldchtein F, Gelikonov V, Iksanov R, Gelikonov G, Kuranov R, Sergeev A, Gladkova N, Ourutina M, Reitze D, Warren J. In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt Express 1998;3:239-250. https://doi.org/10.1364/OE.3.000239
  83. Wang XJ, Milner TE, de Boer JF, Zhang Y, Pashley DH, Nelson JS. Characterization of dentin and enamel by use of optical coherence tomography. Applied opt 1999;38:2092-2096. https://doi.org/10.1364/AO.38.002092
  84. Everett MJ, B.W. C, Sathyam US, Silva BD, Fried D, Featherstone JD. Non-invasive diagnosis of early caries with polarization sensitive optical coherence tomography (PS-OCT) Laser in Dentistry V: SPIE, San Jose, CA; 1999: p177-183.
  85. Otis LL, Colston BW, Jr., Everett MJ, Nathel H. Dental optical coherence tomography: a comparison of two in vitro systems. Dentomaxillofac Radio 2000;29: 85-89. https://doi.org/10.1038/sj.dmfr.4600507
  86. Ko AC, Choo-Smith LP, Hewko M, Leonardi L, Sowa MG, Dong CC, Williams P, Cleqhorn B. Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy. J Biomed Opt 2005;10:031118. https://doi.org/10.1117/1.1915488
  87. Choo-Smith LP, Dong CC, Cleghorn B, Hewko M. Shedding new light on early caries detection. J Can Dent Assoc 2008;74:913-918.
  88. Sowa MG, Popescu DP, Werner J, Hewko M, Ko AC, Payette J, Dong CC, Cleqhorn B, Choo-Smith LP. Precision of Raman depolarization and optical attenuation measurements of sound tooth enamel. Anal Bioanal Chem 2007;387:1613-1619. https://doi.org/10.1007/s00216-006-0856-9
  89. Li J, Bowman C, Fazel-Rezai R, Hewko M, Choo- Smith LP. Speckle reduction and lesion segmentation of OCT tooth images for early caries detection. Conf Proc IEEE Eng Med Biol Soc 2009;2009:1449-1452. https://doi.org/10.1109/IEMBS.2009.5332916
  90. Chen Y, Otis L, Piao D, Zhu Q. Characterization of dentin, enamel, and carious lesions by a polarizationsensitive optical coherence tomography system. Appl Opt 2005;44:2041-2048. https://doi.org/10.1364/AO.44.002041
  91. Meng Z, Yao XS, Yao H, Liang Y, Liu T, Li Y, Wang G, Lan S. Measurement of the refractive index of human teeth by optical coherence tomography. J Biomed Opt 2009;14:034010. https://doi.org/10.1117/1.3130322
  92. Maia AM, Fonseca DD, Kyotoku BB, Gomes AS. Characterization of enamel in primary teeth by optical coherence tomography for assessment of dental caries. Int J Paediatr Dent 2010;20:158-164. https://doi.org/10.1111/j.1365-263X.2009.01025.x
  93. Holtzman JS, Osann K, Pharar J, Lee K, Ahn YC, Tucker T, Sabet S, Chen Z, Gukasyan R, Wilder-Smith P. Ability of optical coherence tomography to detect caries beneath commonly used dental sealants. Lasers Surg Med 2010;42:752-759. https://doi.org/10.1002/lsm.20963
  94. Lu Z, Kasaragod DK, Matcher SJ. Optic axis determination by fibre-based polarization-sensitive sweptsource optical coherence tomography. Phys Med Biol 2011;56:1105-1122. https://doi.org/10.1088/0031-9155/56/4/014

Cited by

  1. Differential diagnosis of periapical cyst using collagen birefringence pattern of the cyst wall vol.42, pp.2, 2017, https://doi.org/10.5395/rde.2017.42.2.111
  2. studies: an evaluation of experimental protocols vol.39, pp.3, 2014, https://doi.org/10.5395/rde.2014.39.3.164