References
- P. B. Bochev, Z. Cai, T. A. Manteuffel, and S. F. McCormick, Analysis of velocity-ux first-order system least-squares principles for the Navier-Stokes equations. I, SIAM J. Numer. Anal. 35 (1998), no. 3, 990-1009. https://doi.org/10.1137/S0036142996313592
- F. Brezzi, J. Rappaz, and P. A. Raviart, Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions, Numer. Math. 36 (1980/81), no. 1, 1-25.
- P. Ciarlet, Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer, Berlin, 1986.
- S. D. Kim, Y. H. Lee, and B. C. Shin, Newton's method for the Navier-Stokes equations with finite-element initial guess of Stokes equations, Comput. Math. Appl. 51 (2006), no. 5, 805-816. https://doi.org/10.1016/j.camwa.2006.03.007
- D. A. Knoll and V. A. Mousseau, On Newton-Krylov multigrid methods for the incom- pressible Navier-Stokes equations, J. Comput. Phys. 163 (2000), 262-267. https://doi.org/10.1006/jcph.2000.6561
- D. A. Knoll and W. Rider, A multigrid preconditioned Newton-Krylov method, SIAM J. Sci. Comput. 21 (1999), no. 2, 691-710. https://doi.org/10.1137/S1064827598332709
- M. Pernice and M. D. Tocci, A multigrid-preconditioned Newton-Krylov Method for the incompressible Navier-Stokes equations, SIAM J. Sci. Comput. 23 (2001), no. 2, 398-418. https://doi.org/10.1137/S1064827500372250