DOI QR코드

DOI QR Code

STRONG LIMIT THEOREMS FOR WEIGHTED SUMS OF NOD SEQUENCE AND EXPONENTIAL INEQUALITIES

  • Wang, Xuejun (School of Mathematical Science Anhui University) ;
  • Hu, Shuhe (School of Mathematical Science Anhui University) ;
  • Volodin, Andrei I. (Department of Mathematics and Statistics University of Regina)
  • Received : 2009.11.20
  • Published : 2011.09.30

Abstract

Some properties for negatively orthant dependent sequence are discussed. Some strong limit results for the weighted sums are obtained, which generalize the corresponding results for independent sequence and negatively associated sequence. At last, exponential inequalities for negatively orthant dependent sequence are presented.

Keywords

References

  1. A. Adler, On the nonexistence of a law of the iterated logarithm for weighted sums of identically distributed random variables, J. Appl. Math. Stochastic Anal. 3 (1990), no. 2, 135-140. https://doi.org/10.1155/S1048953390000119
  2. R. G. Antonini, J. S. Kwon, S. H. Sung, and Andrei I. Volodin, On the strong convergence of weighted sums, Stochastic Anal. Appl. 19 (2001), no. 6, 903-909. https://doi.org/10.1081/SAP-120000752
  3. A. Bozorgnia, R. F. Patterson, and R. L. Taylor, Limit theorems for dependent random variables, World Congress of Nonlinear Analysts '92, Vol. I-IV (Tampa, FL, 1992), 1639- 1650, de Gruyter, Berlin, 1996
  4. Y. S. Chow and T. L. Lai, Limiting behavior of weighted sums of independent random variables, Ann. Probability 1 (1973), no. 5, 810-824. https://doi.org/10.1214/aop/1176996847
  5. V. Fakoor and H. A. Azarnoosh, Probability inequalities for sums of negatively dependent random variables, Pakistan J. Statist. 21 (2005), no. 3, 257-264.
  6. K. Joag-Dev and F. Proschan, Negative association of random variables with applica- tions, Ann. Statist. 11 (1983), no. 1, 286-295. https://doi.org/10.1214/aos/1176346079
  7. H. C. Kim, The Hajek-Renyi inequality for weighted sums of negatively orthant depen- dent random variables, Int. J. Contemp. Math. Sci. 1 (2006), no. 5-8, 297-303.
  8. M.-H. Ko, K.-H. Han, and T.-S. Kim, Strong laws of large numbers for weighted sums of negatively dependent random variables, J. Korean Math. Soc. 43 (2006), no. 6, 1325- 1338. https://doi.org/10.4134/JKMS.2006.43.6.1325
  9. M.-H. Ko and T.-S. Kim, Almost sure convergence for weighted sums of negatively orthant dependent random variables, J. Korean Math. Soc. 42 (2005), no. 5, 949-957. https://doi.org/10.4134/JKMS.2005.42.5.949
  10. Q. Wu, Complete convergence for negatively dependent sequences of random variables, J. Inequal. Appl. 2010, Art. ID 507293, 10 pp.; doi:10.1155/2010/507293.
  11. W. Wu, On the strong convergence of a weighted sum, Statist. Probab. Lett. 44 (1999), no. 1, 19-22. https://doi.org/10.1016/S0167-7152(98)00287-9

Cited by

  1. On Strong Convergence for Weighted Sums of a Class of Random Variables vol.2013, 2013, https://doi.org/10.1155/2013/216236
  2. Strong convergence properties for ψ-mixing random variables vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-360
  3. Hajek–Renyi-type inequality and strong law of large numbers for END sequences vol.46, pp.2, 2017, https://doi.org/10.1080/03610926.2014.1002938
  4. General results of complete convergence and complete moment convergence for weighted sums of some class of random variables vol.45, pp.15, 2016, https://doi.org/10.1080/03610926.2014.921308
  5. Some convergence properties for weighted sums of pairwise NQD sequences vol.2012, pp.1, 2012, https://doi.org/10.1186/1029-242X-2012-255
  6. Limiting behaviour for arrays of row-wise END random variables under conditions ofh-integrability vol.87, pp.3, 2015, https://doi.org/10.1080/17442508.2014.959951
  7. Bernstein-Type Inequality for Widely Dependent Sequence and Its Application to Nonparametric Regression Models vol.2013, 2013, https://doi.org/10.1155/2013/862602
  8. The consistency for estimator of nonparametric regression model based on NOD errors vol.2012, pp.1, 2012, https://doi.org/10.1186/1029-242X-2012-140
  9. On complete convergence for widely orthant-dependent random variables and its applications in nonparametric regression models vol.23, pp.3, 2014, https://doi.org/10.1007/s11749-014-0365-7
  10. On Complete Convergence for Weighted Sums ofρ*-Mixing Random Variables vol.2013, 2013, https://doi.org/10.1155/2013/947487
  11. On the convergence rate for arrays of row-wise NOD random variables vol.45, pp.5, 2016, https://doi.org/10.1080/03610926.2013.786784
  12. Strong convergence results for weighted sums of ρ˜-mixing random variables vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-327
  13. Convergence properties for weighted sums of NSD random variables vol.45, pp.8, 2016, https://doi.org/10.1080/03610926.2014.881492
  14. Strong law of large numbers and complete convergence for non-identically distributed WOD random variables pp.1532-415X, 2019, https://doi.org/10.1080/03610926.2018.1472787