DOI QR코드

DOI QR Code

Mycorrhizae Effects on N Uptake and Assimilation Estimated by 15N Tracing in White Clover under Water-Stressed Conditions

15N 추적에 의한 화이트 클로버에서 마이코라이자 접종이 수분 스트레스 조건하에서 질소 흡수 및 동화의 평가

  • Received : 2011.06.10
  • Accepted : 2011.08.05
  • Published : 2011.09.30

Abstract

To investigate the effects of arbuscular mycorrhizal (AM) symbiosis on N uptake and its assimilation under drought-stressed conditions in white clover, total $^{15}N$ amount and $^{15}N$ amount incorporated into $NO_3^-$, amino acids and soluble proteins were quantified by $^{15}N$ tracing during 7 days of water treatment. Under well-watered conditions, there were no significant effects of AM symbiosis on all parameters analyzed in this study. Drought stress decreased total $^{15}N$ amount both in AM and non-AM plants, with a lower rate in AM plants (-13.8%) relative to non-AM plants (-28.5%) at day 7. Drought significantly increased $^{15}N-NO_3^-$ amount in non-AM plants. The amount of $^{15}N$-amino acids was 1.26-fold and 1.33-fold higher, respectively, in leaves and roots of AM plants compared to those of non-AM ones. Drought decreased the amount of $^{15}N$-soluble proteins in leaves at day 7, with a higher rate in non-AM plants than in AM ones. These results clearly indicate that AM colonization effectively alleviating the decrease in N uptake, amino acids and proteins synthesis caused by drought stress.

가뭄 스트레스 조건에서 마이코라이자의 접종이 질소의 흡수와 동화에 미치는 영향을 구명하기 위해 마이코라이자를 접종한 처리구와 접종하지 않은 처리구에서 수분처리 7일간 총 $^{15}N$, 흡수된 $NO_3^-$로부터 아미노산과 단백질로 합성된 15N 함량을 각각 분석하였다. 정상 관수구에서는 전 조사항목에서 마이코라이자 접종에 대한 유의적인 효과가 나타나지 않았다. 총 $^{15}N$ 함량은 가뭄 스트레스에 의해 마이코라이자 접종구 및 비접종구에서 각각 13.8%, 28.5% 감소하였다. $^{15}N-NO_3^-$ 함량은 비접종구에서 유의적으로 증가하였다. 아미노산으로 합성된 $^{15}N$ 함량은 마이코라이자 비접종구에 비해 접종구의 잎과 뿌리에서 각각 1.26 및 1.33배 증가하였다. 가뭄 스트레스 조건의 잎에서 단백질로 합성된 $^{15}N$ 함량은 접종구보다 비접종구에서 더 높은 비율로 감소하였다. 이러한 결과는 가뭄 스트레스하에서 감소되는 질소흡수, 아미노산 및 단백질 합성을 마이코라이자 접종에 의해 효율적으로 경감시킬 수 있음을 잘 보여준다.

Keywords

References

  1. Aslam, M. and R.C. Huffaker. 1984. Dependency of nitrate reduction on soluble carbohydrates in primary leaves of barley under aerobic conditions. Plant Physiol. 75:623-628. https://doi.org/10.1104/pp.75.3.623
  2. Azcon, R., F. El-Atrach and J.M. Barea. 1988. Influence of mycorrhiza vs. soluble phosphate on growth, nodulation and $N_2$ fixation $^{15}N$ in alfalfa under different levels of water potential. Biol. Fert. Soils. 7:28-31.
  3. Azcon, R., M. Gomez and R. Tobar. 1996. Physiological and nutritional responses by Lactuca Sativa L. to nitrogen sources and mycorrhizal fungi under drought conditions. Biol. Fert. Soils. 22:156-61. https://doi.org/10.1007/BF00384448
  4. Barbour, M., J.R. Caradus, D.R. Woodfield and W.B. Silvester. 1995. Water stress and water use efficiency often white clover cultivars. In: D.R. Woodfield (Ed.), White Clover: New Zealand's Competitive Edge, pp. 159-162.
  5. Barea, J.M. 1991. Vesicular-arbuscular mycorrhizae as modifiers of soil fertility. Adv. Soil Sci. 15:1-40. https://doi.org/10.1007/978-1-4612-3030-4_1
  6. Bloem, B.R., J.G. Van Dijk, D.J. Beckley, R.A. Roos, M.P. Remlerand G.W. Bruyn. 1992. Altered postural reflexes in Parkinson's disease: a reverse hypothesis. Med. Hypotheses. 39:243-247. https://doi.org/10.1016/0306-9877(92)90116-T
  7. Brink, G.E. and G.A. Pederson. 1998. White clover response to a water application gradient. Crop Sci. 38:771-775. https://doi.org/10.2135/cropsci1998.0011183X003800030025x
  8. Dubay, R. and M. Pessarakli. 1995. Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. In: M. Pessarakli (Ed.), Handbook of plant and crop physiology. New York: Marcel Dekker, Inc., pp. 605-26.
  9. Davies, F.T. Jr, J.R. Potter and R.G. Linderman. 1992. Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and nutrient content. J. Plant Physiol. 139:289-294. https://doi.org/10.1016/S0176-1617(11)80339-1
  10. Kessler, W. and J. Nösberger. 1994. Factors limiting white clover growth in grass/clover systems. In: L. 't Mannetje and J. Frame (Eds.), Proceedings of the 15th General Meeting of the European Grassland Federation. Wageningen Pers, Wageningen, pp. 525-538.
  11. Kim, T.H., A. Ourry, J. Boucaud and G. Lemaire. 1991. Changes in source-sink relationship for nitrogen during regrowth of lucerne (Medicago sativa L.) following removal of shoots. Australian Journal of Plant Physiol. 18:593-602. https://doi.org/10.1071/PP9910593
  12. Kim, T.H., B.R. Lee, W.J. Jung, K.Y. Kim, J.C. Avice and A. Ourry. 2004. De novo protein synthesis in relation to ammonia and proline accumulation in water stressed white clover. Functional Plant Biology 31:847-855. https://doi.org/10.1071/FP04059
  13. Lee, B.R., W.J. Jung, K.Y. Kim, J.C. Avice, A. Ourry and T.H. Kim. 2005. Transient increase of de novo amino acid synthesis and its physiological significance in water-stressed white clover. Funct. Plant Biol. 32:831-838. https://doi.org/10.1071/FP05022
  14. Lee, B.R., W.J. Jung, K.Y. Kim, J.C. Avice, A. Ourry and T.H. Kim. 2007. Peroxidases and lignification in relation to the intensity of water-eficit stress in white clover (Trifoliumrepens L.). J. Exp. Bot. 58:1271-279. https://doi.org/10.1093/jxb/erl280
  15. Marschner, H. 1995. Mineral nutrition of higher plants. New York: Academic Press Inc., P. 887.
  16. Rao, R.K. and A. Gnanam. 1990. Inhibition of nitrate and nitrite reductase activities by salinity stress in Sorghum vulgare. Phytochemistry. 29:1047-1049. https://doi.org/10.1016/0031-9422(90)85400-A
  17. Ruiz, L.J.M. and R. Azcon. 1996. Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants. Agr. Ecosyst. Environ. 60:175-18. https://doi.org/10.1016/S0167-8809(96)01074-2
  18. Subramanian, K.S. and C. Charest. 1998. Arbuscular mycorrhizae and nitrogen assimilation in maize after drought and recovery. Physiol. Plantarum. 102:285-296. https://doi.org/10.1034/j.1399-3054.1998.1020217.x
  19. Tobar, R., R. Azcon and J.M. Barea. 1994. Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol. 126:119122. https://doi.org/10.1111/j.1469-8137.1994.tb07536.x
  20. Walworth, J. L. 1992. Soil drying and rewetting, or freezing and thawing, affects soil solution composition. Soil Sci. Soc. Am. J. 56:433-437. https://doi.org/10.2136/sssaj1992.03615995005600020015x