DOI QR코드

DOI QR Code

Mycorrhizal Colonization Effects on Some Physiological Parameters Related to Drought Stress in White Clover

화이트 클로버에서 마이코라이자 접종이 가뭄 스트레스와 관련된 생리학적 요인에 미치는 영향

  • Received : 2011.06.10
  • Accepted : 2011.08.05
  • Published : 2011.09.30

Abstract

To investigate the physiological effects of mycorrhizal colonization on drought stress tolerance in white clover, the responses of leaf water potential (${\Psi}_{PL}$), relative water content (RWC), leaf dry mass, photosynthesis rate, transpiration, stomatal conductance, proline and ammonia were assessed periodically during 7 days in non-AM and AM plants under wellwatered or drought-stressed conditions. Under well-watered conditions, the examined parameters were not significantly changed or very little affected by AM symbiosis. Drought decreased water potential, relative water content, photosynthesis rate, transpiration and stomatal con ductance by 68.6%, 22.7%, 97.7%, 83.9% and 84.9%, respectively, in non-AM plants, meanwhile 46.8%, 13.4%, 50.3%, 44.8% and 54.7%, respectively, in AM plants. In addition, drought increased ammonia and proline by 31.8% and 162%, respectively, in non-AM plants, while 20.9% and 76.9%, respectively, in AM plants. These results clearly showed that mycorrhizal colonization significantly relieved the responses of physiological parameters to drought stress in white clover.

화이트 클로버에서 마이코라이자 접종이 가뭄스트레스와 관련된 생리학적 요인들을 조사하기 위하여, 마이코라이자 접종 (AM) 또는 비접종구에서 정상관수 (WW) 또는 가뭄 스트레스 처리 (DS)하여 7일동안 주기적으로 잎 수분포텐셜, 상대수분함량, 건물중, 광합성효율, 증산, 기공전도성, 프롤린 및 암모니아 함량을 각각 측정하였다. 모든 조사항목에서 정상적인 관수조건 (대조구)에서는 전 시험기간 중 변화가 매우 적었으며, 마이코라이자 접종에 의한 변화도 매우 낮았다. 반면, 가뭄 스트레스 조건하에서 마이코라이자 비접종구에서는 처리 후 지속적으로 감소하여 처리 7일차에서 잎 수분포텐셜, 상대수분함량, 광합성효율, 증산 및 기공 전도성이 처리일 기준 68.6%, 22.7%, 97.7%, 83.9%, 84.9%로 각각 감소하였으나, 마이코라이자 접종에 의해 각각 그 감소비율이 각각 46.8%, 13.4%, 50.3%, 44.8%, 54.7%로 경감되었다. 암모니아 및 프롤린함량은 가뭄 스트레스 처리 7일후에 마이코라이자 비접종식물에서는 31.8% 및 162%로 각각 증가하였으나, 마이코라이자 접종식물에서는 각각 20.9% 및 76.9%로 그 증가비율이 상대적으로 낮았다. 이러한 결과들은 화이트 클로버에서 마이코라이자 접종이 가뭄처리에 의해 유도되는 스트레스 관련 생리적 요인을 유의적으로 경감시킬 수 있음을 잘 보여준다.

Keywords

References

  1. Auge, R.M. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza. 11:3-42. https://doi.org/10.1007/s005720100097
  2. Bates, L.S., R.P. Waldren and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. PlantSoil. 39:205-207.
  3. Bittman, S. and G.M. Simpson. 1989. Drought effects on waterrelations of three cultivated grasses. Crop Sci. 29:992-999. https://doi.org/10.2135/cropsci1989.0011183X002900040034x
  4. Chaves, M. 1991. Effects of water deficits on carbon assimilation. J. Exp. Bot. 42:1-16. https://doi.org/10.1093/jxb/42.1.1
  5. Hildebrandt, U., M. Regvar, and H. Bothe. 2007. Arbuscular mycorrhiza and heavy metal tolerance. Phytochem. 68:139-146. https://doi.org/10.1016/j.phytochem.2006.09.023
  6. Kessler, W. and J. Nösberger. 1994. Factors limiting white clover growth in grass/clover systems. In: L. 't Mannetje and J. Frame (Eds.), Proceedings of the 15th General Meeting of the European Grassland Federation. Wageningen Pers, Wageningen, pp. 525-538.
  7. Khalvati, M.A., Y. Hu, A. Mozafar, and U. Schmidhalter. 2005. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biol. 7:706-712. https://doi.org/10.1055/s-2005-872893
  8. Kim, T.H. and B.H. Kim, 1996. Ammonia microdiffusion and colorimetric method for determining nitrogen in plant tissues. J. Kor. Grassl. Sci. 16(4):253-259.
  9. Kim, T.H., B.R. Lee, W.J. Jung, K.Y. Kim, J.C. Avice and A. Ourry. 2004. De novo protein synthesis in relation to ammonia and proline accumulation in water stressed white clover. Funct. Plant Biol. 31:847-855. https://doi.org/10.1071/FP04059
  10. Kim, T.H., A. Ourry, J. Boucaud and G. Lemaire. 1991. Changes in source-sink relationship for nitrogen during regrowth of lucerne (Medicago sativa L.) following removal of shoots. Funct. Plant Biol. 18:593-602.
  11. Kramer, P.J. and J.S. Boyer. 1997. Water relations of plants and soils. In Academic Press, San Diego, Calif.
  12. Lee, B.R., W.J. Jung, K.Y. Kim, J.C. Avice, A. Ourry, and T.H. Kim. 2005. Transient increase of de novo amino acid synthesis and its physiological significance in water-stressed white clover. Funct Plant Biol. 32:831-838. https://doi.org/10.1071/FP05022
  13. Porcel, R. and J.M. Ruiz-Lozano. 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J. Exp. Bot. 55:1743-1750. https://doi.org/10.1093/jxb/erh188
  14. Ruiz-Lozano, J. 2003. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza. 13:309-317. https://doi.org/10.1007/s00572-003-0237-6
  15. Sharifi, M., M. Ghorbanli, and H. Ebrahimzadeh. 2007. Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J. Plant Physiol.164:1144-1151. https://doi.org/10.1016/j.jplph.2006.06.016
  16. Sanchez-Blanco, M.J., T. Ferrandez, M.A. Morales, A. Morte and J.J. Alarcon. 2004. Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. J. Plant Physiol. 161:675-682. https://doi.org/10.1078/0176-1617-01191
  17. Wu, Q.S. and R.X. Xia. 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant Physiol. 163:417-425. https://doi.org/10.1016/j.jplph.2005.04.024