DOI QR코드

DOI QR Code

Rhodamine Cyclen-based Fluorescent Chemosensor for the Detection of Cd2+

  • Shim, So-Young (Department of Chemistry and Center for Bioactive Molecular Hybrids (CBMH), Yonsei University) ;
  • Tae, Jin-Sung (Department of Chemistry and Center for Bioactive Molecular Hybrids (CBMH), Yonsei University)
  • 투고 : 2011.02.11
  • 심사 : 2011.02.25
  • 발행 : 2011.08.20

초록

A chemosensor based on a rhodamine-hydroxamate platform containing a pyridine and a cyclen binding units has been developed for the detection of $Cd^{2+}$ in aqueous solutions. The probe responds selectively toward $Cd^{2+}$ over other biologically relevant metal ions. The fluorescent probe shows 1:1 binding stoichiometry and the detection limit for $Cd^{2+}$ in water proved to be as low as 25 nM.

키워드

참고문헌

  1. Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706. https://doi.org/10.1021/ja00072a025
  2. Beck, F.; Rüetchi, P. Electrochim. Acta 2000, 45, 2467. https://doi.org/10.1016/S0013-4686(00)00344-3
  3. Satarug, S.; Baker, J. R.; Urbenjapol, S.; Haswell- Elkins, M.; Reilly, P. E. B.; Williams, D. J.; Moore, M. R. Toxicol. Lett. 2003, 137, 65. https://doi.org/10.1016/S0378-4274(02)00381-8
  4. Mendes, A. M. S.; Duda, G. P.; do Nascimento, C. W. A.; Silva, M. O. Sci. Agric. 2006, 63, 328. https://doi.org/10.1590/S0103-90162006000400003
  5. Dobson, S. Cadmium-Environmental Aspects; World Health Organization: Geneva, 1992.
  6. Cadmium in the Human Environment: Toxicity and Carcinogenicity; Nordberg, G. F.; Herber, R. F. M.; Alessio, L.; Eds; Oxford University Press: Oxford, 1992.
  7. Friberg, L.; Elinger, C. G.; Kjelstrom, T. Cadmium; World Health Organization: Geneva, 1992.
  8. Benjamin, M. W.; Honeyman, B. D. In: Butcher, S. S.; Chalrson, R. J.; Orians, G. H.; Wolfe, G. V. Eds.; Editors Global Biogeochemical Cycles; Academic, London, 1992, 317.
  9. Goyer, R. A.; Liu, J.; Waalkes, M. P. Biometals 2004, 17, 555. https://doi.org/10.1023/B:BIOM.0000045738.59708.20
  10. Waisberg, M.; Joseph, P.; Hale, B.; Beyersmann, D. Toxicology 2003, 192, 95. https://doi.org/10.1016/S0300-483X(03)00305-6
  11. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans; Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry; Vol. 58, International Agency for Research on Cancer: Lyon, France, 1993.
  12. Anthemidis, A. N.; Karapatouchas, C. P. Microchim. Acta 2008, 160, 455. https://doi.org/10.1007/s00604-007-0775-2
  13. Kaya, G.; Yaman, M. Talanta 2008, 75, 1127. https://doi.org/10.1016/j.talanta.2008.01.008
  14. Davis, A. C.; Calloway, C. P.; Jr, Jones, B. T. Talanta 2007, 71, 1144. https://doi.org/10.1016/j.talanta.2006.06.005
  15. Bryan, A. J.; de Silva, A. P.; de Silva, S. A.; Rupasinghe, R. A. D. D.; Sandanayake, K. R. A. S. Biosensors 1989, 4, 169. https://doi.org/10.1016/0265-928X(89)80018-5
  16. Bissell, R. A.; de Silva, A. P.; Gunaratne, H. Q. N.; Lynch, P. L. M.; Maguire, G. E. M.; Sandanayake, K. R. A. S. Chem. Soc. Rev. 1992, 21, 187. https://doi.org/10.1039/cs9922100187
  17. Tsien, R. Y. Am. J. Physiol. 1992, 263, C723. https://doi.org/10.1152/ajpcell.1992.263.4.C723
  18. Czarnik, A. W. Acc. Chem. Res. 1994, 27, 302. https://doi.org/10.1021/ar00046a003
  19. Fabbizzi, L.; Poggi, A. Chem. Soc. Rev. 1995, 24, 197. https://doi.org/10.1039/cs9952400197
  20. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515. https://doi.org/10.1021/cr960386p
  21. Valeur, B.; Laray, I. Coord. Chem. Rev. 2000, 205, 3. https://doi.org/10.1016/S0010-8545(00)00246-0
  22. Rurack, K. Spectrochim. Acta Part A 2001, 57, 2161. https://doi.org/10.1016/S1386-1425(01)00492-9
  23. de Silva, A. P.; Fox, D. B.; Moody, T. S.; Weir, S. M. Pure Appl. Chem. 2001, 73, 503. https://doi.org/10.1351/pac200173030503
  24. James, T. D.; Shinkai, S. Top. Curr. Chem. 2002, 218, 159. https://doi.org/10.1007/3-540-45010-6_6
  25. Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419. https://doi.org/10.1021/cr010421e
  26. Jiang, P.; Guo, Z. Coord. Chem. Rev. 2004, 248, 205. https://doi.org/10.1016/j.cct.2003.10.013
  27. Domaille, D. W.; Que, E. L.; Chang, C. J. Nat. Chem. Biol. 2008, 3, 168. https://doi.org/10.1038/nnano.2008.5
  28. Fluorescent Probes; ed. Beddard, G. S.; West, M. A.; Eds.; Academic. London, 1981.
  29. Haugland, R. P.; The Handbook-A Guide to Fluorescent Probes and Labeling Technologies, 10th ed.; Invitrogen. Eugene, OR, 2005.
  30. Prodi, L.; Montalti, M.; Zaccheroni, N.; Bradshaw, J. S.; Izatt, R. M.; Savage, P. B. Tetrahedron Lett. 2001, 42, 2941. https://doi.org/10.1016/S0040-4039(01)00330-6
  31. Tang, X.; Peng, X.-H.; Dou, W.; Mao, J.; Zheng, J.-R.; Qin, W.-W.; Liu, W.-S.; Chang, J.; Yao, X.-J. Org. Lett. 2008, 10, 3653. https://doi.org/10.1021/ol801382f
  32. Xue, L.; Liu, C.; Jiang, H. Org. Lett. 2009, 11, 1655. https://doi.org/10.1021/ol900315r
  33. Xue, L.; Liu, Q.; Jiang, H. Org. Lett. 2009, 11, 3454. https://doi.org/10.1021/ol901380w
  34. Choi, M.; Kim, M.; Lee, K. D.; Han, K.-N.; Yoon, I.-A.; Chung, H.-J.; Yoon, J. Org. Lett. 2001, 3, 3455. https://doi.org/10.1021/ol016400o
  35. Gunnlaugsson, T.; Lee, T. C.; Parkesh, R. Org. Lett. 2003, 5, 4065. https://doi.org/10.1021/ol035484t
  36. Gunnlaugsson, T.; Lee, T. C.; Parkesh, R. Tetrahedron 2004, 60, 11239. https://doi.org/10.1016/j.tet.2004.08.047
  37. Peng, X.; Du, J.; Fan, J.; Wang, J.; Wu, Y.; Zhao, J.; Sun, S.; Xu, T. J. Am. Chem. Soc. 2007, 129, 1500. https://doi.org/10.1021/ja0643319
  38. Cheng, T.; Xu, Y.; Zhang, S.; Zhu, W.; Qian, X.; Duan, L. J. Am. Chem. Soc. 2008, 130, 16160. https://doi.org/10.1021/ja806928n
  39. Liu, W.; Xu, L.; Sheng, R.; Wang, P.; Li, H.; Wu, S. Org. Lett. 2007, 9, 3829. https://doi.org/10.1021/ol701620h
  40. Taki, M.; Desaki, M.; Ojida, A.; Iyoshi, S.; Hirayama, T.; Hamachi, I.; Yamamoto, Y. J. Am. Chem. Soc. 2008, 130, 12564. https://doi.org/10.1021/ja803429z
  41. Lu, C.; Xu, Z.; Cui, J.; Zhang, R.; Qian, X. J. Org. Chem. 2007, 72, 3554. https://doi.org/10.1021/jo070033y
  42. Saleh, N.; Rawashdeh, A.-M. M.; Yousef, Y. A.; Al- Soud, Y. A. Spectrochim. Acta Part A 2007, 68, 728. https://doi.org/10.1016/j.saa.2006.12.061
  43. Luo, H.- Y.; Jiang, J.-H.; Zhang, X.-B.; Li, C.-Y.; Shen, G.-L.; Yu. R.-Q. Talanta 2007, 72, 575. https://doi.org/10.1016/j.talanta.2006.11.028
  44. Zhou, Y.; Xiao, Y.; Qian, X. Tetrahedron Lett. 2008, 49, 3380. https://doi.org/10.1016/j.tetlet.2008.03.128
  45. Lee, H. N.; Kim, H. N.; Swamy, K. M. K.; Park, M. S.; Kim, J.; Lee, H.; Lee, K.-H.; Park, S.; Yoon, J. Tetrahedron Lett. 2008, 49, 1261. https://doi.org/10.1016/j.tetlet.2007.11.158
  46. Akkaya, E. U.; Huston, M. E.; Czarnik, A. W. J. Am. Chem. Soc. 1990, 112, 3590. https://doi.org/10.1021/ja00165a051
  47. Huston, M. E.; Engleman, C.; Czarnik, A. W. J. Am. Chem. Soc. 1990, 112, 7054. https://doi.org/10.1021/ja00175a046
  48. Dakternieks, D. Coord. Chem. Rev. 1990, 98, 279. https://doi.org/10.1016/0010-8545(90)80072-2
  49. Lim, N. C.; Yao, L.; Freake, H. C.; Brückner, C. Bioorg. Med. Chem. Lett. 2003, 13, 2251. https://doi.org/10.1016/S0960-894X(03)00464-5
  50. Hanaoka, K.; Kikuchi, K.; Kojima, H.; Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2004, 126, 12470. https://doi.org/10.1021/ja0469333
  51. Nolan, E. M.; Ryu, J. W.; Jaworski, J.; Feazell, R. P.; Sheng, M.; Lippard, S. J. J. Am. Chem. Soc. 2006, 128, 15517. https://doi.org/10.1021/ja065759a
  52. Zhang, L.; Clark, R. J.; Zhu, L. Chem. Eur. J. 2008, 14, 2894. https://doi.org/10.1002/chem.200701419
  53. Yunus, S.; Charles, S.; Dubois, F.; Vander Donckt, E. J. Fluoresc. 2008, 18, 499. https://doi.org/10.1007/s10895-007-0291-0
  54. Koike, T.; Watanabe, T.; Aoki, S.; Kimura, E.; Shiro, M. J. Am. Chem. Soc. 1998, 118, 12696.
  55. Kimura, E.; Koike, T. Chem. Commun. 1998, 1495.
  56. Aoki, S.; Kawatani, H.; Goto, T.; Kimura, E.; Shiro, M. J. Am. Chem. Soc. 2001, 123, 1123. https://doi.org/10.1021/ja0033786
  57. Aoki, S.; Kaido, S.; Fujioka, H.; Kimura, E. Inorg. Chem. 2003, 42, 1023. https://doi.org/10.1021/ic020545p
  58. Aoki, S.; Kagata, D.; Shiro, M.; Takeda, K.; Kimura, E. J. Am. Chem. Soc. 2004, 126, 13377. https://doi.org/10.1021/ja040095v
  59. Aoki, S.; Kimura, E. Chem. Rev. 2004, 104, 769. https://doi.org/10.1021/cr020617u
  60. Shiraishi, Y.; Kohno, Y.; Hirai, T. Ind. Eng. Chem. Res. 2005, 44, 847. https://doi.org/10.1021/ie049459i
  61. Aoki, S.; Sakurama, K.; Matsuo, N.; Yamada, Y.; Takasawa, R.; Tanuma, S.-i.; Shiro, M.; Takeda, K.; Kimura, E. Chem. Eur. J. 2006, 12, 9066. https://doi.org/10.1002/chem.200600379
  62. Majzoub, A. E.; Cadiou, C.; Déchamps-Oliver, I.; Chuburu, F.; Aplincourt, M. Eur. J. Inorg. Chem. 2007, 5087.
  63. Aoki, S.; Sakurama, K.; Ohshima, R.; Matsuo, N.; Yamada, Y.; Takasawa, R.; Tanuma, S.- i.; Takeda, K.; Kimura, E. Inorg. Chem. 2008, 47, 2747. https://doi.org/10.1021/ic702002m
  64. Zeng, Z.; Spiccia, L. Chem. Eur. J. 2009, 15, 12941. https://doi.org/10.1002/chem.200902734
  65. Kodama, M.; Kimura, E. J. Chem. Soc. Dalton Trans. 1977, 2269.
  66. Amorim, M. T. S.; Chaves, S.; Delgado, R.; Frausto, J. J. R. J. Chem. Soc. Dalton Trans. 1991, 3065.
  67. Mizukami, S.; Nagano, T.; Urano, Y.; Odani, A.; Kikuchi, K. J. Am. Chem. Soc. 2002, 124, 3920. https://doi.org/10.1021/ja0175643
  68. Wu, Q.; Anslyn, E. V. J. Am. Chem. Soc. 2004, 126, 14682. https://doi.org/10.1021/ja0401038
  69. Shiraishi, Y.; Sumiya, S.; Kohno, Y.; Hirai, T. J. Org. Chem. 2008, 73, 8571. https://doi.org/10.1021/jo8012447
  70. Shinoda, S.; Okazaki, T.; Player, T. N.; Misaki, H.; Hori, K.; Tsukube, H. J. Org. Chem. 2005, 70, 1835. https://doi.org/10.1021/jo0478297
  71. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, 2006; pp 67-69.
  72. Ramette, R. W.; Sandell, E. B. J. Am. Chem. Soc. 1956, 78, 4872. https://doi.org/10.1021/ja01600a017
  73. Valdes- Aguilera, O.; Neckers, D. C. Acc. Chem. Res. 1989, 22, 171. https://doi.org/10.1021/ar00161a002
  74. Dujols, V.; Ford, F.; Czarnik, A. W. J. Am. Chem. Soc. 1997, 119, 7386. https://doi.org/10.1021/ja971221g
  75. Yang, Y.-K.; Yook, K.-J.; Tae, J. J. Am. Chem. Soc. 2005, 127, 16760. https://doi.org/10.1021/ja054855t
  76. Ko, S.-K.; Yang, Y.-K.; Tae, J.; Shin, I. J. Am. Chem. Soc. 2006, 128, 14150. https://doi.org/10.1021/ja065114a
  77. Yang, Y.-K.; Ko, S.-K.; Shin, I.; Tae, J. Nat. Protoc. 2007, 2, 1740. https://doi.org/10.1038/nprot.2007.246
  78. Bae, S.; Tae, J. Tetrahedron Lett. 2007, 48, 5389. https://doi.org/10.1016/j.tetlet.2007.06.014
  79. Yang, Y.-K.; Lee, S.; Tae, J. Org. Lett. 2009, 11, 5610. https://doi.org/10.1021/ol902325u
  80. Yang, Y.-K.; Ko, S.-K.; Shin, I.; Tae, J. Org. Biomol. Chem. 2009, 7, 4590. https://doi.org/10.1039/b915723a
  81. Yang, Y.-K.; Cho, H. J.; Lee, J.; Shin, I.; Tae, J. Org. Lett. 2009, 11, 859. https://doi.org/10.1021/ol802822t
  82. Kang, S.; Kim, S.; Yang, Y.- K.; Bae, S.; Tae, J. Tetrahedron Lett. 2009, 50, 2010. https://doi.org/10.1016/j.tetlet.2009.02.087
  83. Moon, K.-S.; Yang, Y.-K.; Ji, S.; Tae, J. Tetrahedron Lett. 2010, 51, 3290. https://doi.org/10.1016/j.tetlet.2010.04.068
  84. Yang, Y.-K.; Shim, S.; Tae, J. Chem. Commun. 2010, 46, 7766. https://doi.org/10.1039/c0cc02381g
  85. Benniston, A. C.; Gunning, P.; Peacock, R. D. J. Org. Chem. 2005, 70, 115. https://doi.org/10.1021/jo048621o
  86. Kimura, E.; Aoki, S.; Koike, T.; Shiro, M. J. Am. Chem. Soc. 1997, 119, 3068. https://doi.org/10.1021/ja9640408
  87. Vosburgh, W. C.; Cooper, G. R. J. Am. Chem. Soc. 1941, 63, 437. https://doi.org/10.1021/ja01847a025
  88. Connors, K. A. Binding Constants-The Measurement of Molecular Complex Stability; John Wiley & Sons: New York, 1987; Chapter 4.
  89. Liu, Z.; Zhang, C.; He, W.; Yang, Z.; Gao, X.; Guo, Z. Chem. Commun. 2010, 46, 6138. https://doi.org/10.1039/c0cc00662a

피인용 문헌

  1. Rhodamine cyclic hydrazide as a fluorescent probe for the detection of hydroxyl radicals vol.49, pp.72, 2013, https://doi.org/10.1039/c3cc44627a
  2. Fluorescent Probes Based on Rhodamine Hydrazides and Hydroxamates vol.16, pp.1, 2016, https://doi.org/10.1002/tcr.201500226
  3. ) ions by luminescent metallo-supramolecular polymer formation vol.3, pp.47, 2015, https://doi.org/10.1039/C5TC02734A
  4. based on a rhodamine derivative in aqueous media vol.44, pp.39, 2015, https://doi.org/10.1039/C5DT02731D
  5. A fluorescent and colorimetric probe based on isatin-appended rhodamine for the detection of Hg2+ vol.32, pp.5, 2016, https://doi.org/10.1007/s40242-016-6001-1
  6. Supramolecular Luminescent Sensors vol.119, pp.1, 2011, https://doi.org/10.1021/acs.chemrev.8b00260
  7. Engaging Dynamic Surfactant Assemblies in Improving Metal Ion Sensitivity of a 1,4,7-Triazacyclononane-Based Receptor: Differential Optical Response for Cysteine and Histidine vol.2, pp.6, 2011, https://doi.org/10.1021/acsabm.9b00083
  8. Recent advancements in the role of N-Heterocyclic receptors on heavy metal ion sensing vol.191, pp.None, 2011, https://doi.org/10.1016/j.dyepig.2021.109331