DOI QR코드

DOI QR Code

Spectroscopic Studies on the Oxidation of Catechin in Aqueous Solution

  • Bark, Ki-Min (Department of Chemical Education and Research Institute of Life Science, Gyeongsang National University) ;
  • Yeom, Ji-Eun (Department of Chemistry, Chonnam National University) ;
  • Yang, Jeong-Im (Department of Chemistry, Chonnam National University) ;
  • Yang, Ik-Jun (Department of Chemistry, Chonnam National University) ;
  • Park, Chul-Ho (Department of Cosmetic Science, Nambu University) ;
  • Park, Hyoung-Ryun (Department of Chemistry, Chonnam National University)
  • Received : 2011.06.24
  • Accepted : 2011.08.01
  • Published : 2011.09.20

Abstract

The spectroscopic behavior of catechin (5,7,3',4'-tetrahydroxyflavan-3-ol), has been studied in the presence and the absence of air using UV-vis absorption spectrophotometry and fluorescence spectroscopy. The UV-vis absorption spectrum of catechin shows a very sharp and strong absorption maximum peak at 275 nm in deaerated water. New absorption maximum peaks appeared in aerated water, as well as in basic aqueous solution, caused by the oxidation of catechin. The absorbances in the UV-vis absorption spectrum of catechin decreased when the solution was left in the dark for a long time. The fluorescence emission spectrum of catechin after a long time period differs markedly from that in freshly prepared solution; the fluorescence maxia shifted as time passes after adding catechin to the solutions. When the deaerated basic catechin solutions were left in the dark for a long time, their fluorescence quantum yields were found to be nearly zero. This suggests that the oxidized catechin molecules were seen to have slowly undergone successive chemical reactions in basic buffer solution.

Keywords

References

  1. Caturla, N.; Vera-Samper, E.; Villalain, J.; Mateo, C. R.; Micol, V. Free radical Biol. and Med. 2003, 34(6), 648. https://doi.org/10.1016/S0891-5849(02)01366-7
  2. Yang, C. S.; Chung, J. Y.; Yang, G.; Chhabra, S. K.; Lee, M. J. J. Nutr. 2000, 130, 472.
  3. Yang, C. S.; Landau, J. M.; Huang, M. T.; Newmark, H. L. Annu. Rev. Nutr. 2001, 21, 381. https://doi.org/10.1146/annurev.nutr.21.1.381
  4. McKay, D. L.; Blumberg, J. B. J. Am. Coll. Nutr. 2002, 21, 1. https://doi.org/10.1080/07315724.2002.10719187
  5. Wang, H.; Provan, G. J.; Helliwell, K. Trends food Sci. Tech. 2000, 11, 152. https://doi.org/10.1016/S0924-2244(00)00061-3
  6. Rice-Evans, C. Biochem. Soc. Symp. 1995, 61, 103.
  7. Gradisar, H.; Pristovsek, P.; Plaper, A.; Jerala, R. J. Med. Chem. 2007, 50, 264. https://doi.org/10.1021/jm060817o
  8. Katiyar, S.; Elmets, C. A.; Katiyar, S. K. J. Nutr. Biochem. 2007, 18, 287. https://doi.org/10.1016/j.jnutbio.2006.08.004
  9. Frankel, E. N. J. Agric. Food Chem. 1995, 43, 890. https://doi.org/10.1021/jf00052a008
  10. Torreggiani, A.; Jurasekova, Z.; Sanchez-Cortes, S.; Tamba, M. Journal of Raman Spectroscopy 2008, 39, 265. https://doi.org/10.1002/jrs.1849
  11. Park, H. R.; Liu, H. B.; Shin, S. C.; Park, J. K.; Bark, K. M. Bull. Korean. Chem. Soc. 2011 32, 981. https://doi.org/10.5012/bkcs.2011.32.3.981
  12. Jovanovic, S. V.; Hara, Y.; Steenken, S.; Simic, M. G. J. Am. Chem. Soc. 1995, 117, 9881. https://doi.org/10.1021/ja00144a014
  13. Jovanovic, S. V.; Steenken, S.; Simic, M. G.; Hara, Y. Flavonoids in Health and Disease; Rice-Evans, C. A., Packer, L., Eds.; Marcel Dekker, Inc.: New York, U.S.A., 1998; p 137.
  14. Bors, W.; Heller, W.; Michel, C.; Saran, M. Methods. Enzymol. 1990, 186, 343. https://doi.org/10.1016/0076-6879(90)86128-I
  15. Sies, H. Eur. J. Biochem. 1993, 215, 213. https://doi.org/10.1111/j.1432-1033.1993.tb18025.x
  16. Komatsu, Y.; Suematsu, S.; Hisanobu, Y.; Saigo, H.; Matsuda, R.; Hara, K. Bioscience Biotechnology & Biochemistry 1993, 57, 907. https://doi.org/10.1271/bbb.57.907
  17. Jovanovic, S. V.; Simic, M. G.; Steenken, S.; Hara, Y. J. Chem. Soc. Perkin Trans 1998, 2, 2365.
  18. Eaton, D. F. Reference Compounds for Fluorescence Measurement; IUPAC Organic Chem. Division: Wilmington, U.S.A., 1987; p 1.
  19. Bark, K. M.; Force, R. K. Spectrochim. Acta 1993, 49(A), 1605. https://doi.org/10.1016/0584-8539(93)80117-S
  20. Demas, J. N.; Grosby, G. A. J. Phys. Chem. 1971, 75, 2463. https://doi.org/10.1021/j100685a009
  21. Morrison, R. T.; Boyd, R. N. Organic Chemistry, 3th ed.; Allyn and Bacon, Inc.: Boston, USA, 1973; p 798.
  22. Gichinga, M. G.; Striegler, S. J. Amer. Chem. Soc. 2008, 130, 5150. https://doi.org/10.1021/ja078057+
  23. Koval, I. A.; Gamez, P.; Belle, C.; Selmeczi, K.; Reedijk, J. J. Chem. Soc. Rev. 2006, 35, 814. https://doi.org/10.1039/b516250p
  24. Belle, C.; Selmeczi, K.; Torelli, S.; Pierre, J.-L. C. R. Chim. 2007, 10, 271. https://doi.org/10.1016/j.crci.2006.10.007
  25. Kim, E.; Chufan, E. E.; Kamaraj, K.; Karlin, K. D. Chem. Rev. 2004, 104, 1077. https://doi.org/10.1021/cr0206162
  26. Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047. https://doi.org/10.1021/cr020633r
  27. Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Plenum Press: New York, USA, 1983; p 257.

Cited by

  1. Studies on the Interaction between Catechin and Metal Ions vol.33, pp.12, 2012, https://doi.org/10.5012/bkcs.2012.33.12.4235
  2. Tuning a 96-Well Microtiter Plate Fluorescence-Based Assay to Identify AGE Inhibitors in Crude Plant Extracts vol.18, pp.11, 2013, https://doi.org/10.3390/molecules181114320
  3. The Spectral Properties of (-)-Epigallocatechin 3-O-Gallate (EGCG) Fluorescence in Different Solvents: Dependence on Solvent Polarity vol.8, pp.11, 2013, https://doi.org/10.1371/journal.pone.0079834
  4. Influence of Temperature on the Distribution of Catechin in Corn Oil-in-Water Emulsions and Some Relevant Thermodynamic Parameters vol.9, pp.4, 2014, https://doi.org/10.1007/s11483-014-9332-9
  5. Determination of Total Phenolic Compounds in Common Beverages Using CdTe Quantum Dots vol.41, pp.2, 2016, https://doi.org/10.1111/jfpp.12863
  6. Tea polyphenols: Enzyme inhibition effect and starch digestibility vol.69, pp.7-8, 2016, https://doi.org/10.1002/star.201600195
  7. Efficient functionalisation of dextran-aldehyde with catechin: potential applications in the treatment of cancer vol.7, pp.14, 2016, https://doi.org/10.1039/C6PY00228E
  8. Forecasting and evaluating antioxidant properties of fruit, and vegetable, juices using polarization curves vol.41, pp.6, 2017, https://doi.org/10.1111/jfpp.13225
  9. Electrochemical Study of Trametes Versicolor Laccase Compatibility to Different Polyphenolic Substrates vol.5, pp.1, 2017, https://doi.org/10.3390/chemosensors5010009
  10. Versatile oligomers and polymers from flavonoids – a new approach to synthesis vol.8, pp.15, 2017, https://doi.org/10.1039/C7PY00325K
  11. Tuned synthesis of doped rare-earth orthovanadates for enhanced luminescence vol.4, pp.9, 2011, https://doi.org/10.1039/c3ra44979c
  12. Spectroscopic Study on the Anti-oxidant Properties of Flavonoid Galangin vol.15, pp.4, 2011, https://doi.org/10.20402/ajbc.2017.0146
  13. Green Tea and Struvite Crystals in Relation to Infectious Urinary Stones: The Role of (−)-Epicatechin vol.17, pp.11, 2011, https://doi.org/10.1021/acs.cgd.7b01043
  14. Evaluation of a Novel Collagenous Matrix Membrane Cross-Linked with Catechins Catalyzed by Laccase: A Sustainable Biomass vol.67, pp.5, 2011, https://doi.org/10.1021/acs.jafc.8b05810
  15. Effect of (−)-Epicatechin on Poorly Crystalline and Amorphous Precipitate. The Role of Green Tea Compound in the Formation of Infectious Urinary Stones vol.20, pp.1, 2020, https://doi.org/10.1021/acs.cgd.9b00936
  16. Color determination method and evaluation of methods for the detection of cannabinoids by thin‐layer chromatography (TLC) vol.66, pp.3, 2021, https://doi.org/10.1111/1556-4029.14659
  17. Electrochemical and Computational Examination of Camellia Sinensis Assamica Biomolecules Ability to Retard Mild Steel Corrosion in Sodium Chloride Solutions vol.8, pp.1, 2011, https://doi.org/10.1007/s40735-021-00611-7