DOI QR코드

DOI QR Code

Oxidative Modification of Neurofilament-L Induced by Endogenous Neurotoxin, Salsolinol

  • 투고 : 2011.04.27
  • 심사 : 2011.07.31
  • 발행 : 2011.09.20

초록

The endogenous neurotoxin, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), has been considered a potential causative factor for the pathogenesis of Parkinson's disease (PD). In this study, we examined oxidative modification of neurofilament-L (NF-L) induced by salsolinol. When disassembled NF-L was incubated with salsolinol, the aggregation of protein was increased with the concentration of sasolinol. The formation of carbonyl compound was obtained in salsolinol-mediated NF-L aggregates. This process was protected by free radical scavengers, such as N-acetyl-L-cysteine and glutathione. These results suggest that the aggregation of NF-L is mediated by salsolinol via the generation of free radicals. We also investigated the effects of copper ion on salsolinol-mediated NF-L modification. In the presence of copper ions, salsolinol enhanced the modification of NF-L. We suggest that salsolinol might be related to abnormal aggregation of NF-L which may be involved in the pathogenesis of neurodegenerative diseases and related disorders.

키워드

참고문헌

  1. Surh, Y. J.; Jung, Y. J.; Jung, J. H.; Lee, J. S.; Yoon, H. R. J. Toxicol. Environ. Health Part A 2002, 65, 473-488. https://doi.org/10.1080/15287390252808127
  2. Wanpen, S.; Govitrapong, P.; Shrali, S.; Sangchot, P.; Ebadi, M. Brain Res. 2004, 1005, 67-76. https://doi.org/10.1016/j.brainres.2004.01.054
  3. Riess, O.; Kuhn, W.; Kruger, R. J. Neurol. 2000, 247 (Suppl. 2) II69-II74. https://doi.org/10.1007/PL00007764
  4. Forno, L. S. Adv. Neurol. 1987, 45, 35-43.
  5. Pollanen, M. S.; Dickson, D. W.; Bergeron, C. J. Neuropathol. Exp. Neurol. 1993, 52, 183-191. https://doi.org/10.1097/00005072-199305000-00001
  6. Nixon, R. A.; Lewis, S. E. J. Biol. Chem. 1986, 261, 16298-16301.
  7. Nixon, R. A.; Shea, T. B. Cell Motil. Cytoskeleton 1992, 22, 81-91. https://doi.org/10.1002/cm.970220202
  8. Hill, W. D.; Lee, V. M.; Hurtig, H. I.; Murray, J. M.; Trojanowski, J. Q. J. Comp. Neurol. 1991, 309, 150-160. https://doi.org/10.1002/cne.903090111
  9. Shepherd, C. E.; McCann, H.; Thiel, E.; Halliday, G. M. Neurobiol. Dis. 2002, 9, 249-257. https://doi.org/10.1006/nbdi.2001.0469
  10. Collard, J. F.; Cote, F.; Julien, J. P. Nature 1995, 375, 61-64. https://doi.org/10.1038/375061a0
  11. Ma, D.; Descarries, L.; Micheva, K. D.; Lepage, Y.; Julien, J. P.; Doucet, G. J. Comp. Neurol. 1999, 406, 433-448. https://doi.org/10.1002/(SICI)1096-9861(19990419)406:4<433::AID-CNE2>3.0.CO;2-3
  12. Xu, Z.; Cork, L. C.; Griffin, J. W.; Cleveland, D. W. Cell 1993, 73, 23-33. https://doi.org/10.1016/0092-8674(93)90157-L
  13. Middeldorp, J.; van den Berge, S. A.; Aronica, E.; Speijer, D.; Hol, E. M. PLoS ONE. 2009, 4, 7663-7669. https://doi.org/10.1371/journal.pone.0007663
  14. Kang, J. H. Bull. Korean Chem. Soc. 2007, 28, 77-80. https://doi.org/10.5012/bkcs.2007.28.1.077
  15. Smith, M. A.; Rudnicka-Nawrot, M.; Richey, P. L.; Praprotnik, D.; Mulvihill, P.; Miller, C. A.; Sayre, L. M.; Perry, G. J. Neurochem. 1995, 64, 2660-2666.
  16. Laemmli, U. K. Nature 1970, 227, 680-685. https://doi.org/10.1038/227680a0
  17. Reznick, A. Z.; Packer, L. Methods Enzymol. 1994, 233, 357-363. https://doi.org/10.1016/S0076-6879(94)33041-7
  18. Collard, J. F.; Cote, F.; Julien, J. P. Nature 1995, 375, 61-64. https://doi.org/10.1038/375061a0
  19. Shepherd, C. E.; McCann, H.; Thiel, E.; Halliday, G. M. Neurobiol. Dis. 2002, 9, 249-257. https://doi.org/10.1006/nbdi.2001.0469
  20. Rahner, N.; Holzmann, C.; Krüger, R.; Schöls, L.; Berger, K.; Riess, O. Brain Res. 2002, 951, 82-86. https://doi.org/10.1016/S0006-8993(02)03138-4
  21. Teunissen, C. E.; Iacobaeus, E.; Khademi, M.; Brundin, L.; Norgren, N.; Koel-Simmelink, M. J.; Schepens, M.; Bouwman, F.; Twaalfhoven, H. A.; Blom, H. J.; Jakobs, C.; Dijkstra, C. D. Neurology 2009, 72, 1322-1329. https://doi.org/10.1212/WNL.0b013e3181a0fe3f
  22. Levine, R. L.; Williams, J. A.; Stadtman, E. R.; Shacter, E.; Methods Enzymol. 1994, 233, 346-357. https://doi.org/10.1016/S0076-6879(94)33040-9
  23. Murray, J.; Oquendo, C. E.; Willis, J. H.; Marusich, M. F.; Capaldi, R. A. Adv. Drug Deliv. Rev. 2008, 60, 1497-1503. https://doi.org/10.1016/j.addr.2008.05.003
  24. Soto-Otero, R.; Sanmartin-Suarez, C.; Sanchez-Iglesias, S.; Hermida- Ameijeiras, A.; Sanchez-Sellero, I.; Mendez-Alvarez, E. J. Biochem. Mol. Toxicol. 2006, 20, 209-220. https://doi.org/10.1002/jbt.20138
  25. Perluigi, M.; Joshi, G.; Sultana, R.; Calabrese, V.; De Marco, C.; Coccia, R. D.; Butterfield, D. A. Neuroscience 2006, 138, 1161-1170. https://doi.org/10.1016/j.neuroscience.2005.12.004
  26. Berlett, B. S.; Stadtman, E. R. J. Biol. Chem. 1997, 272, 20313-20316. https://doi.org/10.1074/jbc.272.33.20313
  27. Halliwell, B.; Gutteridge, J. M. FEBS Lett. 1992, 307, 108-112. https://doi.org/10.1016/0014-5793(92)80911-Y
  28. Imlay, J. A.; Chin, S. M.; Linn, S. Science 1988, 240, 640-642. https://doi.org/10.1126/science.2834821
  29. Sagripanti, J. L.; Kraemer, K. H. J. Biol. Chem. 1989, 264, 1729- 1734.
  30. Sagripanti, J. L.; Swicord, M. L.; Davis, C. C. Radiat. Res. 1987, 110, 219-231. https://doi.org/10.2307/3576900
  31. O'Connell, M. J.; Peters, T. J. Chem. Phys. Lipids 1987, 45, 241- 249. https://doi.org/10.1016/0009-3084(87)90067-3
  32. Pall, H. S.; Williams, A. C.; Blake, D. R.; Lunec, J.; Gutteridge, J. M.; Hall, M.; Taylor, A. Lancet 1987, 2, 238-241.
  33. Multhaup, G.; Schlicksupp, A.; Hesse, L.; Behler, D.; Ruppert, T.; Masters, C. L.; Beyreuther, K. Science 1996, 271, 1406-1409. https://doi.org/10.1126/science.271.5254.1406