References
- 김남훈, 堤 壽一, 홍순일, 이성재. 1999. 구조용 목질재료의 전단파괴기구 해명을 위한 파면해석적 연구. 한국가구학회지 10(1): 23-32.
- 한국산업규격. 2010. KS F 2208, KS F 2209.
- 홍병화, 변희섭. 1995. 소나무 압축응력재의 동 탄성율과 내부마찰. 목재공학 32(2): 32-36.
- Ando, K., Y. Hirashima, M. Sugihara, S. Hirao, and Y. Sasaki. 2006. Microscopic processes of shearing fracture of old wood, examined using the acoustic emission technique. Journal of Wood Science 52: 483-489. https://doi.org/10.1007/s10086-005-0795-7
- Carlquist, S. 1988. Comparative wood anatomy Systematic, Ecological, and Evolutionary Aspects of Dicotyledon Wood. Springer. p. 144.
- Cote, W. A., A. C. Day, and T. E. Timell. 1969. A contribution to the ultrastructure of tension wood fibers. Wood science and Technology 3(4): 257-271. https://doi.org/10.1007/BF00352301
- Cote, W. A. and R. B. Hanna. 1983. Ultrastructural characteristics of wood fracture surfaces. Wood and Fiber Science 15(2): 135-163.
- Cronshaw, J. and P. R. Morey. 1968. The effect of plant growth substances on the development of tension wood in horizontally inclined stems of Acer rubrum seedlings. Protoplasma 65(4): 379-391. https://doi.org/10.1007/BF01666298
- Diaz-vaz, J. E., R. A. Ananias, S. Rodriguez, M. Torres, A. Fernandez, and H. Poblete, 2009. Compression wood in Pinus radiata II: Density and chemical composition. Maderas. Ciencia y tecnología 11(2): 139-151.
- Donaldson, L. A. 1995. Cell wall fracture properties in relation to lignin distribution and cell dimensions among three genetic groups of radiata pine. Wood Science and Technology 29(1): 51-63. https://doi.org/10.1021/es00001a006
- George, T. 1991. Science and Technology of Wood: Structure, Properties, Utilization. Tsoumis Van Nostrand Reinhold. p. 93-96.
- Harish, S., D. P. Michael, A. Bensely, D. M. Lal, and A. Rajadurai. 2009. Mechanical property evaluation of natural fiber coir composite. Materials Characterization 60(1): 44-49. https://doi.org/10.1016/j.matchar.2008.07.001
- Kaku, T., S. Serada, K. Baba, F. Tanaka, and T. Hayashi. 2009. Proteomic analysis of the G-layer in poplar tension wood. Journal of Wood Science 55(4): 250-257. https://doi.org/10.1007/s10086-009-1032-6
- Kifetew, G., F. Thuvander, L. Berglund, and H. Lindberg. 1998. The effect of drying on wood fracture surfaces from specimens loaded in wet condition. Wood Science and Technology 32(2): 83-94. https://doi.org/10.1007/BF00702589
- Kim, N. H., T. Okano, and M. Ohta. 1988. Fractography of drying checks. Bulletin of the Tokyo University Forests. 78: 83-95.
- Lehringer, C., G. Daniel, and U. Schmitt. 2009. TEM/FE-SEM studies on tension wood fibres of Acer spp., Fagus sylvatica L. and Quercus robur L. Wood Science and Technology 43(7-8): 691-702. https://doi.org/10.1007/s00226-009-0260-7
- Michalska, J., S. Maria, and M. Hetmańczyk. 2009. Application of quantitative fractography in the assessment of hydrogen damage of duplex stainless steel. Materials Characterization 60(10): 1100-1106. https://doi.org/10.1016/j.matchar.2009.05.005
- Nakai, T., N. Igushi, and K. Ando. 1998. Piezoelectric behavior of wood under combined compression and vibration stresses I: Relation between piezoelectric voltage and microscopic deformation of a Sitka spruce (Picea sitchensis Carr.) 44(1): 28-34. https://doi.org/10.1007/BF00521871
- Nakanishi, Y., K. Hana, and H., Hamada. 1997. Fractography of fracture in CFRP under compressive load. Composites Science and Technology 57(8): 1139-1147. https://doi.org/10.1016/S0266-3538(96)00160-1
- Panshin, A. J. and C. de Zeeuw. 1980. Textbook of wood technology -structure, identification, properties, and uses of the commercial woods of the United States and Canada. McGraw-Hill in New York.
- Quinn, J. B. and G. D. Quinn. 2010. Material properties and fractography of an indirect dental resin composite. Dental Materials 26(6): 589-599. https://doi.org/10.1016/j.dental.2010.02.008
- Ruelle, J., J. Beauchêne, H. Yamamoto, and B. Thibaut. 2011. Variations in physical and mechanical properties between tension and opposite wood from three tropical rainforest species. Wood Science and Technology. 45(2): 339-357. https://doi.org/10.1007/s00226-010-0323-9
- Sell, J. and T. Zimmermann. 1993. Radial fibril agglomerations of the S2 on transverse-fracture surfaces of tracheids of tension-loaded spruce and white fir. European Journal of Wood and Wood Products 51(6): 384. https://doi.org/10.1007/BF02628234
- Tarpani, J. R., C. O. F. T. Ruckert, M. T. Milan, R. V. Silva, A. Rosato Jr., R. N. Pereira, W. W. Bose, and D. Spinelli. 2004. Estimating fatigue life under variable amplitude loading through quantitative fractography. Engineering Failure Analysis 11(4): 547-559. https://doi.org/10.1016/j.engfailanal.2003.09.004
- Teh, S. F., T. Liu, L. Wang, and C. He. 2005. Fracture behaviour of poly(ethylene terephthalate) fiber toughened epoxy composites. Composites Part A: Applied Science and Manufacturing 36(8): 1167-1173. https://doi.org/10.1016/j.compositesa.2004.08.007
- Timell, T. E. 1986. Compression wood in Gymnosperns Vol. I. II. III. Springer-Verlog. Berlin.
- Wilkes, J. 1987. Effect of moisture content on the morphology of longitudinal fracture in Eucalyptus maculata. IAWA Bulletin n. s. 8(2): 175-181. https://doi.org/10.1163/22941932-90001044
- Wise, L. M., Z. Wang, and M. D. Grynpas. 2007. The use of fractography to supplement analysis of bone mechanical properties in different strains of mice. Bone 41(4): 620-630. https://doi.org/10.1016/j.bone.2007.06.012
- Yamamoto, H. 2004. Role of the gelatinous layer on the origin of the physical properties of the tension wood. Journal of Wood Science 50(3): 197-208.