DOI QR코드

DOI QR Code

Fractography of Sound and Tension Woods of Quercus mongolica by Shear and Bending Stress

신갈나무 정상재와 인장이상재의 전단 및 휨 파면해석

  • Kwon, Sung-Min (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Kwon, Gu-Joong (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Jang, Jae-Hyuk (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Kim, Nam-Hun (College of Forest & Environmental Sciences, Kangwon National University)
  • 권성민 (강원대학교 산림환경과학대학) ;
  • 권구중 (강원대학교 산림환경과학대학) ;
  • 장재혁 (강원대학교 산림환경과학대학) ;
  • 김남훈 (강원대학교 산림환경과학대학)
  • Received : 2011.06.22
  • Accepted : 2011.07.19
  • Published : 2011.07.25

Abstract

This study has been carried out to understand the fracture characteristics of the tension wood of Quercus mongolica under the shear and bending stress. Macroscopically, the wood fluff in the shear surface appeared more frequently in tension wood than sound wood, and more coarse wood fluffs were observed in 30% than 10% moistured shear surface. In the fractured tension wood from bending stress, more thick and long wood fiber appeared than sound wood. The observation using scanning electron microscope indicated that both sound and tension wood samples from radial shear surface showed the intrawall dominated failure and the fracture surface of the ray parenchyma cell showed the transwall dominated failure. In tangential shear surface, wood fiber surface showed the intrawall failure and short and coarse wood fiber was observed in tension wood. Ray parenchyma cell of sound and tension wood samples showed the transwall failure. The surfaces of tension wood’s ray parenchyma cell were relatively clean. The fractured tension wood from bending stress showed unsharp and flat wood fiber compared with sound wood.

인장이상재를 갖는 활엽수재의 파괴특성을 이해하기 위해 신갈나무재의 전단시험 및 휨시험을 통하여 파괴단면을 관찰하였다. 육안적으로 관찰한 결과 전단시편의 경우 정상재보다 인장이상재 시편에서 더 많은 섬유의 보풀이 관찰되었고, 함수율 30% 시편의 전단면이 10%보다 거칠고 많은 섬유의 보풀이 관찰되었다. 휨시험에 의해 파괴된 인장이상재는 정상재에 비해 목섬유가 굵고 길게 드러나 있는 것이 관찰되었다. SEM 관찰 결과 방사면 전단파괴시 정상재와 인장이상재의 목섬유는 벽내파괴에 의한 파괴형태를 보여주고 있으며, 방사유세포는 벽절단파괴에 가까운 형태로 파괴되었다. 접선면 전단파괴시 목섬유는 벽내파괴에 의한 파괴형태를 보여주고 있고 인장이상재의 목섬유의 파괴부분이 더 거칠었다. 방사유세포는 양 시편 모두 벽절단파괴에 의한 파괴 형태를 보여주었으며, 인장이상재의 방사유세포에서 절단면이 비교적 깨끗한 것으로 나타났다. 휨시험에 의한 목섬유 파면의 형태는 정상재의 목섬유에 비하여 인장이상재가 파괴 시 끝이 무디고 깨끗하게 끊어진 모습을 보여주었다.

Keywords

References

  1. 김남훈, 堤 壽一, 홍순일, 이성재. 1999. 구조용 목질재료의 전단파괴기구 해명을 위한 파면해석적 연구. 한국가구학회지 10(1): 23-32.
  2. 한국산업규격. 2010. KS F 2208, KS F 2209.
  3. 홍병화, 변희섭. 1995. 소나무 압축응력재의 동 탄성율과 내부마찰. 목재공학 32(2): 32-36.
  4. Ando, K., Y. Hirashima, M. Sugihara, S. Hirao, and Y. Sasaki. 2006. Microscopic processes of shearing fracture of old wood, examined using the acoustic emission technique. Journal of Wood Science 52: 483-489. https://doi.org/10.1007/s10086-005-0795-7
  5. Carlquist, S. 1988. Comparative wood anatomy Systematic, Ecological, and Evolutionary Aspects of Dicotyledon Wood. Springer. p. 144.
  6. Cote, W. A., A. C. Day, and T. E. Timell. 1969. A contribution to the ultrastructure of tension wood fibers. Wood science and Technology 3(4): 257-271. https://doi.org/10.1007/BF00352301
  7. Cote, W. A. and R. B. Hanna. 1983. Ultrastructural characteristics of wood fracture surfaces. Wood and Fiber Science 15(2): 135-163.
  8. Cronshaw, J. and P. R. Morey. 1968. The effect of plant growth substances on the development of tension wood in horizontally inclined stems of Acer rubrum seedlings. Protoplasma 65(4): 379-391. https://doi.org/10.1007/BF01666298
  9. Diaz-vaz, J. E., R. A. Ananias, S. Rodriguez, M. Torres, A. Fernandez, and H. Poblete, 2009. Compression wood in Pinus radiata II: Density and chemical composition. Maderas. Ciencia y tecnología 11(2): 139-151.
  10. Donaldson, L. A. 1995. Cell wall fracture properties in relation to lignin distribution and cell dimensions among three genetic groups of radiata pine. Wood Science and Technology 29(1): 51-63. https://doi.org/10.1021/es00001a006
  11. George, T. 1991. Science and Technology of Wood: Structure, Properties, Utilization. Tsoumis Van Nostrand Reinhold. p. 93-96.
  12. Harish, S., D. P. Michael, A. Bensely, D. M. Lal, and A. Rajadurai. 2009. Mechanical property evaluation of natural fiber coir composite. Materials Characterization 60(1): 44-49. https://doi.org/10.1016/j.matchar.2008.07.001
  13. Kaku, T., S. Serada, K. Baba, F. Tanaka, and T. Hayashi. 2009. Proteomic analysis of the G-layer in poplar tension wood. Journal of Wood Science 55(4): 250-257. https://doi.org/10.1007/s10086-009-1032-6
  14. Kifetew, G., F. Thuvander, L. Berglund, and H. Lindberg. 1998. The effect of drying on wood fracture surfaces from specimens loaded in wet condition. Wood Science and Technology 32(2): 83-94. https://doi.org/10.1007/BF00702589
  15. Kim, N. H., T. Okano, and M. Ohta. 1988. Fractography of drying checks. Bulletin of the Tokyo University Forests. 78: 83-95.
  16. Lehringer, C., G. Daniel, and U. Schmitt. 2009. TEM/FE-SEM studies on tension wood fibres of Acer spp., Fagus sylvatica L. and Quercus robur L. Wood Science and Technology 43(7-8): 691-702. https://doi.org/10.1007/s00226-009-0260-7
  17. Michalska, J., S. Maria, and M. Hetmańczyk. 2009. Application of quantitative fractography in the assessment of hydrogen damage of duplex stainless steel. Materials Characterization 60(10): 1100-1106. https://doi.org/10.1016/j.matchar.2009.05.005
  18. Nakai, T., N. Igushi, and K. Ando. 1998. Piezoelectric behavior of wood under combined compression and vibration stresses I: Relation between piezoelectric voltage and microscopic deformation of a Sitka spruce (Picea sitchensis Carr.) 44(1): 28-34. https://doi.org/10.1007/BF00521871
  19. Nakanishi, Y., K. Hana, and H., Hamada. 1997. Fractography of fracture in CFRP under compressive load. Composites Science and Technology 57(8): 1139-1147. https://doi.org/10.1016/S0266-3538(96)00160-1
  20. Panshin, A. J. and C. de Zeeuw. 1980. Textbook of wood technology -structure, identification, properties, and uses of the commercial woods of the United States and Canada. McGraw-Hill in New York.
  21. Quinn, J. B. and G. D. Quinn. 2010. Material properties and fractography of an indirect dental resin composite. Dental Materials 26(6): 589-599. https://doi.org/10.1016/j.dental.2010.02.008
  22. Ruelle, J., J. Beauchêne, H. Yamamoto, and B. Thibaut. 2011. Variations in physical and mechanical properties between tension and opposite wood from three tropical rainforest species. Wood Science and Technology. 45(2): 339-357. https://doi.org/10.1007/s00226-010-0323-9
  23. Sell, J. and T. Zimmermann. 1993. Radial fibril agglomerations of the S2 on transverse-fracture surfaces of tracheids of tension-loaded spruce and white fir. European Journal of Wood and Wood Products 51(6): 384. https://doi.org/10.1007/BF02628234
  24. Tarpani, J. R., C. O. F. T. Ruckert, M. T. Milan, R. V. Silva, A. Rosato Jr., R. N. Pereira, W. W. Bose, and D. Spinelli. 2004. Estimating fatigue life under variable amplitude loading through quantitative fractography. Engineering Failure Analysis 11(4): 547-559. https://doi.org/10.1016/j.engfailanal.2003.09.004
  25. Teh, S. F., T. Liu, L. Wang, and C. He. 2005. Fracture behaviour of poly(ethylene terephthalate) fiber toughened epoxy composites. Composites Part A: Applied Science and Manufacturing 36(8): 1167-1173. https://doi.org/10.1016/j.compositesa.2004.08.007
  26. Timell, T. E. 1986. Compression wood in Gymnosperns Vol. I. II. III. Springer-Verlog. Berlin.
  27. Wilkes, J. 1987. Effect of moisture content on the morphology of longitudinal fracture in Eucalyptus maculata. IAWA Bulletin n. s. 8(2): 175-181. https://doi.org/10.1163/22941932-90001044
  28. Wise, L. M., Z. Wang, and M. D. Grynpas. 2007. The use of fractography to supplement analysis of bone mechanical properties in different strains of mice. Bone 41(4): 620-630. https://doi.org/10.1016/j.bone.2007.06.012
  29. Yamamoto, H. 2004. Role of the gelatinous layer on the origin of the physical properties of the tension wood. Journal of Wood Science 50(3): 197-208.