DOI QR코드

DOI QR Code

올리고키토산에 의한 토마토 역병과 감자 역병의 방제

Control of Late Blight of Tomato and Potato by Oilgochitosan

  • 최용호 (한국화학연구원 그린화학연구본부 산업바이오화학연구센터) ;
  • 최경자 (한국화학연구원 그린화학연구본부 산업바이오화학연구센터) ;
  • 김병섭 (강릉대학교 식물생명과학과) ;
  • 장경수 (한국화학연구원 그린화학연구본부 산업바이오화학연구센터) ;
  • 윤미영 (한국화학연구원 그린화학연구본부 산업바이오화학연구센터) ;
  • 박명수 (한국화학연구원 그린화학연구본부 산업바이오화학연구센터) ;
  • 김진철 (한국화학연구원 그린화학연구본부 산업바이오화학연구센터)
  • Cho, Yong-Ho (Chemical Biotechnology Research Center, Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Choi, Gyung-Ja (Chemical Biotechnology Research Center, Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Byung-Sup (Department of Applied Plant Science, Kangnung National University) ;
  • Jang, Kyoung-Soo (Chemical Biotechnology Research Center, Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Yoon, Mi-Young (Chemical Biotechnology Research Center, Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Park, Myoung-Soo (Chemical Biotechnology Research Center, Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Cheol (Chemical Biotechnology Research Center, Green Chemistry Division, Korea Research Institute of Chemical Technology)
  • 투고 : 2011.06.09
  • 심사 : 2011.06.30
  • 발행 : 2011.08.31

초록

키토산은 D-glucosamine과 N-acetyl-D-glucosamine이 ${\beta}$-(1-4)로 연결된 직선상의 다당류이다. 분자량이 3,000 amu 이상인 키토산에 대한 in vivo 항균활성 및 저항성 유도 활성에 대한 보고는 많지만, 분자량이 3,000 이하인 올리고키토산에 대한 in vivo 항균활성에 대한 논문은 거의 전무한 상태이다. 본 연구에서 올리고키토산은 P. infestans에 의해 발생하는 토마토 역병에 대하여 500 ${\mu}g$/ml과 1,000 ${\mu}g$/ml 수준에서 94% 이상의 매우 높은 접종 1일전 예방효과를 보였으며, 고추 탄저병과 밀 붉은녹병에 대해서는 500 ${\mu}g$/ml과 1,000 ${\mu}g$/ml 수준에서 67% 내지 89%의 중간 정도의 에방효과를 항온항습실 조건에서 보였다. 다른 한편으로 올리고키토산은 고추 탄저병에 대하여 접종 16시간 후 치료효과를 보였지만, 토마토 역병에 대해서는 치료효과를 전혀 보이지 않았다. 포장에서 올리고키토산 액제는 감자 역병과 토마토 역병에 대하여 각각 72%와 48%의 방제효과를 보였다. 이상의 결과는 올리고키토산이 감자 및 토마토 역병 방제를 위한 친환경 유기농자재로서 사용이 가능하다는 것을 강력하게 나타낸다.

Chitosan is a linear polysaccharide composed of randomly distributed ${\ss}$-(1-4)-linked D-glucosamine and Nacetyl-D-glucosamine. There have been many reports on the induced systemic resistance and in vivo antifungal activities of higher molecular weight chitosans with molecular weights over 3,000 amu (atomatic mass unit), but there are few papers on in vivo antifungal activities of low molecular weight chitosans (oligochitosans) with molecular weights less than 3,000 amu. In our study, an oligochitosan sample (320.3,000 amu) showed a potent 1-day protective activity with control values more than 94% at concentrations of 500 and 1,000 ${\mu}g$/ml especially against tomato late blight caused by Phytophthora infestans under growth chamber conditions. It also displayed a moderate 1-day protective activity with control values of 67.89% at concentrations of 500 and 1,000 ${\mu}g$/ml against wheat leaf rust and red pepper anthracnose. On the other hand, it showed a 16-hr curative activity against red pepper anthracnose, but not against tomato late blight and wheat leaf rust. In field experiments, oligochitosan effectively suppressed the development of late blight on potato and tomato plants with control values of 72% and 48%, respectively. The results strongly indicate that oligochitosan can be used as an eco-friendly organic material for the control of late blight on tomato and potato plants.

키워드

참고문헌

  1. 장태현. 2009. 토마토 잎곰팡이병에 대한 키토산 제제의 방제효과. 식물병연구 15: 248-253.
  2. Bengamou, N. and Theriault, G. 1992. Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici. Physiol. Mol. Plant Pathol. 41: 33-52. https://doi.org/10.1016/0885-5765(92)90047-Y
  3. Bhaskara, R. M. V., Arul, J., Angers, P. and Couture, L. 1999. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. J. Agric. Food Chem. 47: 1208-1216. https://doi.org/10.1021/jf981225k
  4. Chet, I. and Inbar, J. 1994. Biological control of fungal pathogens. Appl. Biochem. Biotechnol. 48: 37-43. https://doi.org/10.1007/BF02825358
  5. Cho, J.-Y., Choi, G. J., Lee, S.-W., Jang, K. S., Lim, H. K., Lim, C. H., Lee, S. O., Cho, K. Y. and Kim, J.-C. 2006. Antifungal activity against Colletotrichum spp. of curcuminoids isolated form Curcuma longa L. rhizomes. J. Microbiol. Biotechnol. 16: 280-285.
  6. Cote, F., Roberts, K. A. and Han, M. G. 2000. Identification of high-affinity binfing sites for the hepta-beta-glucoside elicitor in membranes of the model legumes Medicago truncatula and Lotus japonicus. Planta 211: 596-605. https://doi.org/10.1007/s004250000325
  7. Davidse, L. C., Looijen, D., Turkensteen, L. J. and Vander Wal, D. 1981. Occurrence of metalaxyl-resistant strains of Phytophthora infestans in Dutch potato fields. Neth. J. Plant Pathol. 87: 65-68. https://doi.org/10.1007/BF01976658
  8. Dawley, L. J. and O'Sullivan, E. 1981. Metalaxyl-resistance strains of Phytophthora infestans (Mont.) de Bary in Ireland. Potato Res. 24: 417-421. https://doi.org/10.1007/BF02357324
  9. Deahl, K. L., DeMuth, S. P., Pelter, G. and Ormrod, D. 1993. First report of resistance of Phytophthora infestans to metalaxyl in Eastern Washington and Southwestern British Columbia. Plant Dis. 77: 429.
  10. Eikemo, H., Stensvand, A. and Tronsom, A. M. 2003. Induced resistance as a possible means to control diseases of strawberry caused by Phytophthora spp. Plant Dis. 87: 345-350. https://doi.org/10.1094/PDIS.2003.87.4.345
  11. El Ghaouth, A., Arul, J., Asselin, A. and Benhamou, D. 1992. Antifungal activity of chitosan on postharvest pathogens: Induction of morphological and cytological alterations in Rhizopus stolonifer. Mycol. Res. 96: 769-779. https://doi.org/10.1016/S0953-7562(09)80447-4
  12. Enstar, I. R., Mohamed, E. T. B., Christian, V. S., Guy, S. and Walter, S. 2003. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 4: 1457-1465. https://doi.org/10.1021/bm034130m
  13. Folman, L. B., De Klein, M. J. E. M., Postma, J. and van Veen, J. A. 2004. Production of antifungal compounds by Lysobacter enzymogenes isolate 3AE1T8 under different conditions in relation to its efficacy as a biocontrol agent of Pythium aphanidermatum in cucumber. Biol. Control 31: 45-154.
  14. Fry, W. E. and Goodwin, S. B. 1997. Resurgence of the Irish potato famine fungus. Bioscience 47: 363-371. https://doi.org/10.2307/1313151
  15. Gavino, P. D., Smart, C. D., Sandrock, R. W., Miller, J. S., Hamm, P. B., Lee, T. Y., Davis, R. M. and Fry, W. E. 2000. Implications of sexual reproduction for Phytophthora infestans in the United States: generation of an aggressive lineage. Plant Dis. 84: 731-735. https://doi.org/10.1094/PDIS.2000.84.7.731
  16. Giddings, N. J. and Berg, A. 1919. A comparison of the late blights of tomato and potato. Phytopathology 9: 209-210.
  17. Gisi, U. and Cohen, Y. 1996. Resistance to phenylamide fungicides: a case study with Phytophthora infestans involving mating type and race structure. Annu. Rev. Phytopathol. 34: 549-572. https://doi.org/10.1146/annurev.phyto.34.1.549
  18. Goodwin, S. B., Sujkowski, L. S. and Fry, W. E. 1996. Widespread distribution and probable origin of resistance to metalaxyl in clonal genotypes of Phytophthora infestans in the United States and Western Canada. Phytopathology 86: 793-800. https://doi.org/10.1094/Phyto-86-793
  19. Haseo, S., Hiroki, F. and Fukumi, A. 2003. Chitosan-containing composition for improving disease resistance and growth of plants. WO03/077654.
  20. Ito, K., Entani, E. and Kawamura, Y. 1993. Methods for protecting vegetables, turfgrass, rice and fruit from fungi and bacteria. US Patent 5374627.
  21. Kim, J.-C., Choi, G. J., Park, J.-H., Kim, H. T. and Cho, K. Y. 2001. Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest Manag. Sci. 57: 554-559. https://doi.org/10.1002/ps.318
  22. Lin, W., Hu, X., Zhang, W., Rogers, W. J. and Cai, W. 2005. Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice. J. Plant Physiol. 162: 937-944.
  23. Liu, X. F., Guan, Y. L., Yang, D. Z., Li, Z. and Yao, K. D. 2001. Antibacterial action of chitosan and carboxymethylated chitosan. J. Appl. Pol. Sci. 79: 1324-1335. https://doi.org/10.1002/1097-4628(20010214)79:7<1324::AID-APP210>3.0.CO;2-L
  24. Reddy, V. B., Belkacemi, K., Corcuff, R., Castaigne, F. and Arul, J. 2000. Effect of preharvest chitosan spray on postharvest infection by Botrytis cinerea and quality of strawberry fruit. Postharvest Biol. Biotechnol. 20: 39-51. https://doi.org/10.1016/S0925-5214(00)00108-3
  25. Romanazzi, G., Nigro, F. and Ippolito, A. 2000. Effectiveness of pre and postharvest chitosan treatments on storage decay of straw-berries. Riv. Fruttic. Vitic. Ortic. 62: 71-75.
  26. Xu, J., Zhao, X., Han, X. and Du, Y. 2007. Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pest. Biochem. Physiol. 87: 220-228. https://doi.org/10.1016/j.pestbp.2006.07.013
  27. Zhang, M. and Tan, T. W. 2003. Insecticidal and fungicidal activities of chitosan and oligo-chitosan. J. Bioact. Compat. Pol. 18: 391-400. https://doi.org/10.1177/0883911503039019

피인용 문헌

  1. Development of customized control modules for the model forecasting the occurrence of potato late blight vol.41, pp.1, 2014, https://doi.org/10.7744/cnujas.2014.41.1.023
  2. Chitosan for Eco-friendly Control of Plant Disease vol.11, pp.2, 2017, https://doi.org/10.3923/ajppaj.2017.53.70
  3. Application of Chitosan Preparations for Eco-friendly Control of Potato Late Blight vol.18, pp.4, 2012, https://doi.org/10.5423/RPD.2012.18.4.338