• Title/Summary/Keyword: hydrophilic modification

Search Result 155, Processing Time 0.028 seconds

Surface modification of polymeric membranes for low protein binding

  • Higuchi, Akon;Tamai, Miho;Tagawa, Yoh-Ichi;Chang, Yung;Ling, Qing-Dong
    • Membrane and Water Treatment
    • /
    • v.1 no.2
    • /
    • pp.103-120
    • /
    • 2010
  • Surface modification of microfiltration and ultrafiltration membranes has been widely used to improve the protein adsorption resistance and permeation properties of hydrophobic membranes. Several surface modification methods for converting conventional membranes into low-protein-binding membranes are reviewed. They are categorized as either physical modification or chemical modification of the membrane surface. Physical modification of the membrane surface can be achieved by coating it with hydrophilic polymers, hydrophilic-hydrophobic copolymers, surfactants or proteins. Another method of physical modification is plasma treatment with gases. A hydrophilic membrane surface can be also generated during phase-inverted micro-separation during membrane formation, by blending hydrophilic or hydrophilic-hydrophobic polymers with a hydrophobic base membrane polymer. The most widely used method of chemical modification is surface grafting of a hydrophilic polymer by UV polymerization because it is the easiest method; the membranes are dipped into monomers with and without photo-initiators, then irradiated with UV. Plasma-induced polymerization of hydrophilic monomers on the surface is another popular method, and surface chemical reactions have also been developed by several researchers. Several important examples of physical and chemical modifications of membrane surfaces for low-protein-binding are summarized in this article.

Influence of Nitrogen Doping and Surface Modification on Photocatalytic Activity of $TiO_2$ Under Visible Light

  • Jeong, Bora;Park, Eun Ji;Jeong, Myung-Geun;Yoon, Hye Soo;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.130.1-130.1
    • /
    • 2013
  • We made attempts to improve photocatalytic activity of $TiO_2$ nanoparticles under visible light exposure by combining two additional treatments. N-doping of $TiO_2$ by ammonia gas treatment at $600^{\circ}C$ increased absorbance of visible light. By coating thin film of polydimethylsiloxane (PDMS), and subsequent vacuum-annealing at $800^{\circ}C$, $TiO_2$, became more hydrophilic, thereby enhancing photocatalytic activity of $TiO_2$. Four types of $TiO_2$ samples were prepared, bare-$TiO_2$, hydrophilic-modified $TiO_2$ ($h-PDMS/TiO_2$), N-doped $TiO_2$ ($N/TiO_2$) and hydrophilic-modified and N-doped $TiO_2$ ($h-PDMS/N/TiO_2$). Adsorption capability was evaluated under dark condition and photocatalytic activity of $TiO_2$ was evaluated by photodegradation of MB under blue LED (400 nm< ${\lambda}$) irradiation. N-doping on $TiO_2$ was characterized using XPS and hydrophilic modification of $TiO_2$ surface was analyzed by FT-IR spectrometer. It was found that N-doping and hydrophilic modification both had positive effect on enhancing adsorption capability and photocatalytic activity of $TiO_2$ at the same time. Particularly, N-doping enhanced visible light absorption of $TiO_2$, whereas hydrophilic surface modification increased MB adsorption capacity. By combining these two strategies, photocatalytic acitivity under visible light irradiation became the sum of individual effects of N-doping and hydrophilic modification.

  • PDF

Effects of Hydrophilic Surface Treatment on Condensation Heat Transfer at the Outside Wall of Horizontal Tube (수평관 외벽에서 친수성 표면처리가 응축열전달에 미치는 영향)

  • 황규대;박노성;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.533-540
    • /
    • 2000
  • Condensation heat transfer characteristics have been investigated experimentally when a water vapor is condensed on the outside of a horizontal copper tube in a condenser. This problem is of particular interest in the design of a LiBr-water absorption system. Hydrophilic surface modification was performed to increase the wettability on the copper tube. The optimum hydrophilic treatment condition using acethylene and nitrogen as reaction gas is also studied in detail. The results obtained indicate that the optimum reaction gas ratio of acethylene to nitrogen for hydrophilic surface modification was found to be 7 : 3 for the best condensation heat transfer. In the wide ranges of coolant inlet temperatures, and coolant mass flow rates, both the condensation heat transfer rate and the condensation heat transfer coefficient of a hydrophilic copper tube are increased substantially, compared with those of a conventional copper tube used in a condenser. It is also found that the condensation heat transfer enhancement by the hydrophilic surface modification still emains even after a hundred cycles of wet/dry processes.

  • PDF

Hydrophilic surface formation of polumer treated by ion assisted reaction and its applications (이온빔보조 반응법을 이용한 고분자 표면의 친수성처리와 그 응용)

  • Cho, J.;Choi, S. C.;Yun, K.H.;Koh, S. K.
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.262-268
    • /
    • 1999
  • Polycarbonate (PC) and Polymethylmethacrylate (PMMA) surface was modified by ion assisted reaction (IAR) technique to obtain the hydrophilic functional groups and improve the wettability. In conditions of ion assisted reaction, ion beam energy was changed from 500 to 1500eV, and ion dose and oxygen gas blown rate were fixed $1\times10^{16}$ ions/$\textrm{cm}^2$ and 4ml/min, respectively. Wetting angle of water on PC and PMMA surface modified by $Ar^+$ ion without blowing oxygen at 4ml/mon showed $5^{\circ}$ and $10^{\circ}$. Changes of wetting angle with oxygen gas and $Ar^+$ ion irradiation were explained by considering formation of hydrophilic group due to a reaction between irradiated polymer chain by energetic ion irradiation and blown oxygen gas. X-ray photoelectron spectroscopy analysis shows that hydrophilic groups such as -C-O, -(C=O)- and -(C=O)-O- are formed on the surface of polymer by chemical interaction. The polymer surface modification using ion assisted reaction only changed the surface physical properties and sept the bulk properties. In comparison with other modification methods, the surface modification by IAR treatment was chemically stable and enhanced the adhesion between metal and polymer surface. The applications of various kinds of polymer surface modification methods, metal and polymer surface. The applications of various kinds of polymer surface modification could be appled to the new materials about hydrophilic surface properties by IAR treatment. The adhesion between metal film and polymer measured by Scotch tape test whether the hydrophilic surfaces could improve the adhesion strength or not.

  • PDF

Surface Modification of Silica Aerogels (실리카 에어로겔의 표면 개질)

  • 현상훈;이찬호;김동준
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1319-1324
    • /
    • 1996
  • Silica aerogels were synthesis by the sol-gel-supercritical drying process using isopropanol as a solvent. Effets of the heat-treatment and the surface modification through propoxylation on the structural reinforcement as well as the surface hydrophobic/hydrophilic characteristics of aerogels were investigated. Silica aerogels synthesized by supercritical drying were hydrophobic but aerogels heat-treated above 20$0^{\circ}C$ were transformed to be hydrophilic. In particular it was found that the skeletal structure of aerogels heat-treated at 50$0^{\circ}C$ was strong enough not to crack after adsorbing a large amount of water vapor. Hydrophilic aerogels modified by propoxylation at 28$0^{\circ}C$ for 20 h were reversed to the hydrophobic form. Transition between hydrophobicity and hydrophilicity was reversible. The hydrophobicvity and the hydrophilicity of silica aerogels were attributed to the Si-Oh bond and the nonpolar C-H bond groups of orgainc species respectively.

  • PDF

Hydrophilic Modification of Polypropylene Hollow Fiber Membrane by Dip Coating, UV Irradiation and Plasma Treatment

  • Kim Hyun-Il;Kim Jin Ho;Kim Sung Soo
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • PP hollow fiber membrane was hydrophilized by EVOH dip coating followed by low temperature plasma treatment and UV irradiation. EVOH coating attained high water flux without any prewetting but its stability did not guaranteed at high water permeation rate. At high water permeation rate, water flux declined gradually due to swelling and delamination of the EVOH coating layer causing pore blocking effect. However, plasma treatment reduces the swelling, which suppress delamination of the EVOH coating layer from PP support result in relieving the flux decline. Also, UV irradiation helped the crosslinking of the EVOH coating layer to enhance the performance at low water permeation rate. FT-IR and ESCA analyses reveal that EVOH dip coating performed homogeneously through not only membrane surface but also matrix. Thermogram of EVOH film modified plasma treatment and W irradiation show that crosslinking density of EVOH layer increased. Chemical modification by plasma treatment and UV irradiation stabilized the hydrophilic coating layer to increase the critical flux of the submerged membrane.

Modification methods of polyethersulfone membranes for minimizing fouling - Review

  • Sathish Kumar, R.;Arthanareeswaran, G.;Paul, Diby;Kweon, Ji Hyang
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.323-337
    • /
    • 2015
  • Membrane Fouling was considered as major drawback in various industrial applications. Thus, this paper reviews the surface modification of polyethersulfone (PES) membranes for antifouling performance. Various modification techniques clearly indicate that hydrophilicity has to improve on the PES membrane surface. Moreover, the mechanism of fouling reduction with corresponds to various modification methods is widely discussed. Incorporation of hydrophilic functional groups on PES membrane surface enhances the surface free energy thereby which reduces the fouling. Characterization techniques adopted for the surface modified membranes was also discussed. These studies might be useful for the other researchers to utilize the modification technique for the applications of waste water treatment, chemical process industry and food industry.

Static Characteristic of Polyester Fiber by LT-Plasma Polymerization (저온플라즈마중합 처리한 폴리에스터 섬유의 대전특성)

  • 서은덕;강영립;박찬언
    • Textile Coloration and Finishing
    • /
    • v.4 no.4
    • /
    • pp.110-116
    • /
    • 1992
  • For the modification of PET surface, Perfluoropropene and Methyl alcohol were LT-plasma polymerized on the PET fabrics as thin films by means of 13.56 MHz radio frequency generator. The surface properties of PET fabrics were modified from hydrophobic to hydrophilic by application of the postplasma reaction of thin films. The evidence of the modification was identified by observation of the presence of hydroxy group in IR spectrum and the evaluation of degree of hydrophilicity was performed by measuring frictional static voltage of PET fabric with cotton fabric. For the case of modification by PFP, the result performed at the condition of 25 W, 70 m torr has shown to be effective, and for MeOH, result performed at the condition of 25 W, 100 m torr effective. The effect of hydrophilic surface modification of MeOH plasma polymer was superior to that of PFP-plasma polymer.

  • PDF

Surface Modification of Poly(tetrafluoroethylene) (PTFE) Membranes (PTFE 막의 표면 개질 방법)

  • Jun Kyu Jang;Chaewon Youn;Ho Bum Park
    • Membrane Journal
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • In this review, surface modification methods of hydrophobic poly(tetrafluoroethylene) (PTFE) membrane are introduced and their improved hydrophilicity results are discussed. Fluoropolymer based membranes, represented by PTFE membranes have been used in various membrane separation processes, including membrane distillation, oil separation and gas separation. However, despite excellent physical properties such as chemical resistance, heat resistance and high mechanical strength, the strong hydrophobicity of PTFE membrane surface has become a challenging factor in expanding its membrane separation application. To improve the separation performance of PTFE membranes, wet chemical, hydrophilic coating, plasma, irradiation and atomic layer deposition are applied, modifying the surface property of PTFE membranes while maintaining their inherent properties.

Surface Modification of Silicone EVD Tube by Low Temperature Plasma (저온 플라스마를 이용한 실리콘 EVD 튜브의 표면개질)

  • Lee, Y.D.;Cho, D.L.
    • Elastomers and Composites
    • /
    • v.34 no.4
    • /
    • pp.315-320
    • /
    • 1999
  • Surface modification of silicone rubber by low temperature plasma process was investigated to improve quality of silicone EVD tube by reducing tackiness and hydrophobicity. Treatment with nonpolymer-forming plasmas and thin film deposition with polymer-forming plasmas were tried. Tackiness could significantly be reduced, especially by thin film deposition. As a result, the tube became slippery and less vulnerable to contamination in laboratory environment. Inner as well as outer surface of the tube could be changed to be hydrophilic if the plasma contained oxygen. As a result, initial hydrodynamic resistance was reduced. The surface modification did not give any bad influence on mechanical properties of the silicone tube in most cases. Rather, some properties such as Young's modulus, ultimate tensile strength and elongation at break were improved.

  • PDF