DOI QR코드

DOI QR Code

영덕대게와 러시아산대게의 체내 미량금속 함량 연구

A Study on Trace-metals in Korean Yeongdeok Crab and Russian Snow Crab

  • 김초련 (관동대학교 보건환경학과) ;
  • 윤이용 (관동대학교 보건환경학과)
  • Kim, Cho-Ryeon (Department of Health and Environment, Kwandong University) ;
  • Yoon, Yi-Yong (Department of Health and Environment, Kwandong University)
  • 투고 : 2011.01.17
  • 심사 : 2011.06.07
  • 발행 : 2011.08.25

초록

본 연구에서는 생산 지역이 한정되어 있고, 맛이 뛰어나 소비자들이 선호하고 있는 영덕대게와 러시아산 대게의 효율적 이용과 식품위생학적 안전성 및 먹이사슬을 통한 미량금속의 순환 연구에 기초자료를 제공하기 위하여 영덕대게(수컷, 암컷)와 러시아산 대게의 부위별 니켈, 구리, 아연, 카드뮴, 납, 비소, 크롬의 농도를 ICP-MS로 분석하였다. 인증표준물질(certified reference material, CRM)을 사용한 각 금속에 대한 회수율은 평균 81~99%로 Codex에서 요구하고 있는 수준에 부합하였다. 영덕대게의 부위별 금속 농도는 수컷과 암컷의 껍질에서는 Ni > As > Zn > Cu > Cr > Cd, 다리살은 Zn > As > Cu > Cr > Ni > Cd, 몸통살은 Zn > As > Cu > Cr > Cd > Ni, 아가미는 Cu > Zn > As > Cd > Cr > Ni 순으로 같았으며, 내장에서 수컷은 Cu > As > Zn > Cd > Ni > Cr, 암컷은 Cu > Zn > As > Cd > Cr > Ni 으로 다소 차이가 있었다. 러시아산대게는 카드뮴을 제외한 모든 금속류(니켈, 구리, 아연, 비소, 크롬)의 농도가 영덕대게와 비슷하거나 다소 낮게 나타났지만, 카드뮴 농도는 모든 부위에서 높게 나타났다. 특히, 내장에서는 약 2배, 아가미에서는 약 4배 높게 나타났다. 영덕대게의 크기별 미량금속 농도변화에서 부위별로 가장 농도가 높은 금속류(껍질의 Ni, 다리살과 몸통살의 Zn, 내장과 아가미의 Cu)들은 전반적으로 성장할수록 감소하는 경향이 있는 반면, 내장에 가장 많이 축적되어 있는 카드뮴의 농도는 전반적으로 증가하는 경향이 있으며, 성장과 더불어 내장 내 생물축적현상이 가중될 가능성이 있다.

This study is to measure the differences of the trace-metals resulted from the different ecologies, such as nickel(Ni), copper(Cu), zinc(Zn), cadmium(Cd), plumbum(Pb), arsenic(As) and chrome(Cr) remaining in the parts of Korean Yeongdeok Crab (KYC) and Russian Snow Crab (RSC) based on ICP-MS. The recovery rate of each metal certified the reference materials (CRM) was in the average of 81~99%, which corresponded with the level required in Codex. The level of metals in the parts of KYC was in the order of Ni > As > Zn > Cu > Cr > Cd in the both male and female shell; the order of Zn > As > Cu > Cr > Ni > Cd in the leg flesh; the order of Zn > As > Cu > Cr > Cd > Ni in the body flesh; the order of Cu > Zn > As > Cd > Cr > Ni in the gill; the order of Cu > As > Zn > Cd > Ni > Cr in the male hepatopancreas; the order of Cu > Zn > As > Cd > Cr > Ni in the female hepatopancreas, thereby showing some differences. It was revealed that the levels of most metals (nickel, copper, zinc, arsenic and chrome) were similar between KYC and RSC except cadmium which was somewhat lower than that of KYC. However, the cadmium in RSC was discovered in high level in most of the parts, two times higher in the hepatopancreas, and four times in the gill. It was also revealed that the trace metal contents were changing according to the size of KYC; the metals with the highest level of Ni in shell, Zn in leg and body flesh, Cu in gill tended to decrease as growing, whereas the cadmium contents tended to increase overall and accumulated the most in hepatopancreas. The results showed there was a possibility that the phenomenon of bioaccumulation within hepatopancreas would increase as growing.

키워드

참고문헌

  1. 김혜숙, 염동민, 강경태, 오현석, 김진수, 허민수, 2004, "영덕대게의 부위별 식품성분 비교", 해양산업연구소논문집. 17, 59-63.
  2. 김미혜, 이윤동, 박효정, 김은정, 이종욱, 2004, "유통 갑각류중 중금속 함량", 한국식품과학회지. 3, 375-378.
  3. 서화중, 홍성운, 최종환, 1993, "남해안에 서식하는 수산물의 중금속 함량에 관한 연구", 한국식품영양학회지. 22(1), 85-90.
  4. 정길수, 2003, "수입어패류 중의 중금속함량에 관한 연구", 여수대학교.
  5. 해양수산부, 2002, 해양환경공정시험법, 1-330.
  6. Ahearn, G.A., Mandal, P.K. and Mandal, A., 2004, "Mechanisms of heavy- metal sequestration and detoxification in crustaceans, a review", Journal of Comparative Physiology Part B 174, 439-452.
  7. Bryan, G.W. and Ward, E., 1965, "The absorption and loss of radioactive and non-radioactive manganese by the lobster, Homarus vulagaris", Journal of Marine Biological Association, UK 45, 65-95. https://doi.org/10.1017/S0025315400004008
  8. Bryan, G.H., 1971, "The effects of heavy metals (other than mercury) on marine and estuarine organisms", Proceedings of the Royal Society of London Series B, Biological Sciences 177, 389-410.
  9. EU(European Union). 2005, Commission Regulation(EC) No 78/2005 as regards heavy metals. http://europa.eu/in-dex_en.htm.
  10. Kim, J.K and Han, T., 1999, "Effects of inorganic nutrients and heavy metals on grouth and pigmentation of the green alga, Ulva Pertusa kjellman", Kor. J. Environ. Biol, 17, 427-438.
  11. Kim, A.J., Kim, S.Y., Lee, W.C. and Park, M.J., 1998, "Contents of arsenic in some fisheries caught in Western coast", J. Food Hyg. Safety 13, 201-205.
  12. Mok, J.S., Lee, K.J., Shim, K.B., Lee, T.S., Song, K.C., Kim, J.H., 2010, "Contents of Heavy Metals in Marine Invertebrates from the Korean Cost", J. Kor. Soc. Food. Sci. Nutr. 39(6), 894- 901. https://doi.org/10.3746/jkfn.2010.39.6.894
  13. Malins, D.C., McCain, B.B., Brown, D.W., Sparks, A.K. and Hodgins, H.O., 1980, "Chemical Contaminationa and Biological Abnormalities in Central and Southern Puget Sound", NOAA Technical Memorandum, OMPA-2, pp. 295.
  14. Mortimer, M.R., 2000, "Pesticide and trace metal concentrations in Queensland estuarine crabs", Marine Pollution Bulletin 41, 7-21.
  15. Paez Osuna, F., Tron Meyen, L., 1995, "Distribution of heavy merals in tissues of shrimp Penaeus californiensis from the northwest coast of Mexico", Bulletin of Environmental Contamination and Toxicology 55, 209-215.
  16. Rainbow, P.S., 1985, "Accumulation of Zn, Cu and Cd by crabs and barnacles, Estuarine", Coastal and Shelf Sciences 21, 669- 686. https://doi.org/10.1016/0272-7714(85)90065-4
  17. Rainbow, P.S., 1990, Heavy metal levels in marine invertebrates, In Furness, R.W., Rainbow, P.S. (Eds.), Heavy Metals in the Marine Environment. CRC Press, Inc., Boca Raton, pp, 67-79.
  18. Rainbow, P.S., 2007, "Trace metal bioaccumulation: models, metabolic availability, and toxicity", Environment International, 33, 576-582. https://doi.org/10.1016/j.envint.2006.05.007
  19. Reilly, C., 2002, Metal Contamination of Food, Blackwell Science Ltd., London, UK. pp. 81-94.
  20. Rose, M., Lewis, J., Langford, N., Baxter, M., Origgi, S., Barber, M., MacBain, H. and Thomas, K., 2007, "Arsenic in seaweed-. froms, concentration, and dietary exposure", Food Chem. Toxicol. 45, 1263-1267. https://doi.org/10.1016/j.fct.2007.01.007
  21. Sanders, J., Preez, H.H.D. and Van Vuren, J.H.J., 1998, "The freshwater river crab, Potamonautes warreni, as a bioaccumulative indicator of iron and manganese pollution in two aquatic systems", Ecotoxicology and Environmental Safety 41, 203-214. https://doi.org/10.1006/eesa.1998.1699
  22. Stephen, C.J. and A. Sathy N., 2000, "Assessment of Heavy Metals in Red King Crabs Following Offshore Placer Gold Mining", Marine Pollution Bulletin Vol. 40, No. 6, 478-490. https://doi.org/10.1016/S0025-326X(00)00037-0
  23. Sung, D.W. and Lee, Y.W., 1993, "A study on the content of heavy metals of marine fish in korean coastal water", Kor. J. Food Hyg, 8, 231-240.
  24. USFDA (United States Food and Drug Administration). 1993, Guidance Document for Cadmium in Shellfish. p1-44.
  25. USFDA (United States Food and Drug Administration). 2001, Fish and Fisheries Products. Hazards and Controls Guidance. Third Edition. June 2001. USA.
  26. Vernberg, F.J. and Vernberg, W., 1974, Multiple environmental factor effects on physiology and behavior of the fiddler crab, Uca pugilator. In: Vernberg, F.J.,Vernberg, W.B. (Eds.), Pollution and Physiology of Marine Organisms. Academic Press, New York, pp. 381-425.
  27. White, S.L. and Rainbow, P.S., 1985, "On the metabolic requirements for copper and zinc in mollusks and crustaceans", Marine Environmental Review 16, 215-229. https://doi.org/10.1016/0141-1136(85)90139-4

피인용 문헌

  1. Concentrations of trace metals in tissues of Chionoecetes crabs (Chionoecetes japonicus and Chionoecetes opilio) caught from the East/Japan Sea waters and potential risk assessment vol.24, pp.12, 2017, https://doi.org/10.1007/s11356-017-8769-z