Antioxidant Enzyme Activity and Cell Membrane Stability of Korean Bermudagrass Genotypes Different in Ploidy at Dormant Stage

배수성이 다른 자생 버뮤다그래스의 휴면 전후 항산화 효소활성 및 세포막 안정성 변화

  • Received : 2011.05.09
  • Accepted : 2011.05.30
  • Published : 2011.06.30

Abstract

Korean bennudagrass collections showed diverse genetic variations in their morphology, growth habit, and cytological aspects. Chromosome number and nuclear DNA content of the bennudagrasses indicated a ploidy level ranging from triploid (2n=3x) to hexaploid (2n=6x). In this study, we investigated the different responses of antioxidant enzymes (superoxide dismutase, catalase, peroxidase, ascorbate peroxidase) and cell membrane stability of those bennudagrass cytotypes to lower temperature and shorter day length, which meets a dormant induction in Korea. All the antioxidant enzymes were found to be higher during dormant stage, while the heme-containing catalase which converts hydrogen peroxide ($H_2O_2$) to water and oxygen molecules was activated before dormant initiation in the three cytotypes except for hexaploid bennudagrass. The triploid and tetraploid which exhibited relatively finer leaves and a rapid establishment speed were found to show increased activities of superoxide dismutase and peroxidase enzyme. The malondialdehyde(MDA) which is a product of lipid peroxidation in the cell membrane damaged by the hydroxyl radical was increased in all cytotypes as temperature declined, and tri- and tetraploids which had more protective antioxidant enzymes demonstrated a significantly lower MDA production. Similarly electrolyte leakage was higher in penta- and hexaploidy, seemingly more damage to cell membrane when low temperature was implemented. Results indicated that antioxidant responses of different cytotypes were genetically specific, which needs to be investigated the relevance with the low temperature tolerance in the bermudagrass further at the molecular level.

기존 보고된 바에 의하면 한국 자생 버뮤다그래스는 군집 내에서 형태학, 생육 특성, 세포학적 특성에 대해 유전적으로 매우 다양한 변이를 보여주었다. 버뮤다그래스의 염색체 수와 핵 DNA 량에 따르면 배수성 수준의 범위가, 3배 체(2n=3x), 4배체(2n=4x), 5배체(2n=5x), 6배체(2n=6x)로 나타났었다. 본 연구에서는 한국에서 휴면이 유도되는저온과 짧은 일장에 대한 항산화효소(superoxide dismutase, catalase, peroxidase, ascorbate peroxidase)의 다양한 반응과 각 버뮤다그래스 세포형의 세포막 안정성을 조사하였다. 모든 항산화효소는 휴면 기간동안 높게 나타났으나, 과산화수소를 물과 산소 분자로 변환시키는 헴기를 함유한 카탈라제는 6배체 버뮤다그래스를 제외한 세 개의 세포형에서 휴면이 개시되기 전에 활성화되었다. 상대적으로 세엽이며 생육속도가 빠른3배체와 4배체는 superoxide dismutase와 peroxidase 효소의 활성이 증가됨을 확인하였다. 수산기를 가진 라디칼에 의해 손상을 받은 세포막에서 지질과산화의 산물인 말론디알데히드(MDA)는 온도가 감소함에 따라 모든 세포형에서 증가되었고, 방어적인 항산화효소를 더 갖고 있는 3배체와 4배체는 MDA 생산이 현저하게 더 낮게 나타났다. 전해질 유출은 5배체와 6배체에서 더 높았던 것과 유사하게, 저온이 적용될 때 외견상으로 세포막에 더 손상을 받는 것 같았다. 실험 결과, 서로 다른 세포형(cytotype)의 항산화 반응은 유전적으로 특이적이며, 이는 버뮤다그래스에서 저온 저항성과의 연관성을 분자 수준에서 더 연구하는 것이 필요하다.

Keywords

References

  1. Aebi, H. 1974. Catalase. p. 673-684. In: H.D. Bergmeyer (ed.). Methods of enzymatic analysis, vol. 2, Academic Press, N.Y.
  2. Beyer, W.F. and I. Fridovich. 1987. Assaying for superoxide dismutase activity: some large consequences of mionor changes in conditions. Anal. Biochem. 161 :559-566. https://doi.org/10.1016/0003-2697(87)90489-1
  3. Cyril, J., G.L. Powell, R.R. Duncan, and W.V. Baird. 2002. Changes in membrane polar lipid fatty acids of seashore paspalum in response to low temperature exposure. Crop Sci. 42:2031-2037. https://doi.org/10.2135/cropsci2002.2031
  4. Dhindsa, R.S. and W. Matowe. 1981. Drought tolerance in 21 two mosses correlated with enzymatic defense against lipid peroxidation. J. Exp. Bot. 32:79-91. https://doi.org/10.1093/jxb/32.1.79
  5. Heng-Moss, T., G. Sarath, F. Baxendale, D. Novak, S. Bose, X. Ni, and S. Quisenberry. 2004. Characterization of oxidative enzyme changes in buffalograsses challenged by Blissus Oxxiduus. J. Econ. Entomol. 97:1086-1095. https://doi.org/10.1603/0022-0493(2004)097[1086:COOECI]2.0.CO;2
  6. Kang, S.Y., G.J. Lee, K.B. Lim, H.J. Lee, I.S. Park, S.J. Chlmg, J.B. Kim, D.S. Kim, and H.K. Rhee. 2008. Genetic diversity among Korean bermudagrass(Cynodon spp.) ecotypes characterized by morphological, cytological and molecular approaches. Mol. Cells 25: 163-171.
  7. Lee, G.J., R. N. Carrow, and R.R. Duncan. 2005. Growth and water relation responses to salinity stress in halophytic seashore paspalum ecotypes. Sci. Hortic. 104:221-236. https://doi.org/10.1016/j.scienta.2004.08.011
  8. Lee, H.J. G.J. Lee, D.S. Kim, J.B. Kim, J.H. Ju, and S.Y. Kang. 2008. Selection and physiological characterization of glyphosate-tolerant zoysiagrass mutants derived from a gamma ray irradiation. Kor. J. Hort. Sci. Technol. 26:454-463.
  9. Mittler, R. and B.A. Zilinskas. 1993. Detection of ascorbate peroxidase activity in native gels by inhibition of ascorbate dependent reduction of nitroblue tetrazolium. Anal. Biochem. 112:540-546.
  10. Moller, I.M., P.E. Jensen, and A. Hansson. 2007. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 58:459-481. https://doi.org/10.1146/annurev.arplant.58.032806.103946
  11. Ptter, J. 1974. Peroxidase. p. 685-690. In: Bergmeyer, H.U.(ed.). Methods of enzymatic analysis, vol. 2, Academic Press, N.Y.
  12. Trenholm, L.E., M.J. Schlossberg, G. Lee, and W. Parks. 2000. An evaluation of multi-spectral responses on selected turfgrass species. Int. J. Remote Sensing 21:709-721. https://doi.org/10.1080/014311600210524