DOI QR코드

DOI QR Code

Detection of Waterborne Pathogens in Public Bath Houses by PCR-Reverse Blot Hybridization Assay (PCR-REBA)

분자생물학적 방법인 PCR-REBA를 이용한 대중목욕탕 수질 중 수인성병원성미생물 검출

  • Received : 2011.05.24
  • Accepted : 2011.08.11
  • Published : 2011.08.31

Abstract

Contamination of public bath water by waterborne pathogens can cause disease outbreaks and contribute to background rates of disease. The aim of this study is to determine the prevalence of waterborne pathogens in public baths. A total of 30 water samples were collected from 30 different public baths in seoul, Korea. Pathogens in water samples were concentrated by 0.45 ${\mu}m$ nitrocellulose membrane filter, analyzed by both cultivation and polymerase chain reaction-reverse blot hybridization (PCR-REBA) of partial 16S rRNA gene. Various microorganisms including Escherichia coli and Shigella spp. were identified by microbiological cultivation. E. coli, Shigella spp., Salmonella spp., Pseudomonas spp. and Mycobacterium spp. were identified by PCR-REBA. Our results suggest that appropriate hygiene practice and continuous monitoring is needed for reducing health risk associated with public bath houses.

수인성 병원성 미생물에 의한 공중목욕탕의 오염은 질병발생의 원인이 된다. 본 연구에서는 공중목욕탕내에 존재하는 수인성 병원성미생물들을 확인하고자 하였다. 서울지역내의 30 곳 공중목욕탕에서 욕조수 시료를 채수하여 진행하였다. 수인성 병원성미생물의 검출은 0.45 ${\mu}m$의 여과막을 이용하여 전통적인 배양방법으로 분리 및 동정하였다. 분자생물학적 기법을 사용하기 위해 미생물학적인 배양을 하지 않고 핵산을 추출하여 16S rRNA유전자를 표적으로 polymerase chain reaction-reverse blot hybridization (PCR-REBA)을 실시하였다. 미생물학적 배양방법에서는 지표세균인 Escherichia coli와 Shigella spp.가 검출되었으며, 분자생물학적 기법인 PCR-REBA을 수행한 결과 E. coli, Shigella spp., Salmonella spp., Pseudomonas spp., Mycobacterium spp. 등의 수인성 병원성미생물이 7곳에서 검출되었다. 본 연구결과를 토대로 공중목욕탕의 욕조수내에 수인성병원성미생물에 의한 감염을 줄이기 위해 적절한 위생관리과 E. coli를 포함한 유해미생물을 선정하여 지속적인 모니터링이 필요할 것으로 사료된다.

Keywords

References

  1. Kim MS, Lee YM, Kim SK, S대 JH, Ji KH, Oh JY, Ko KD and Ko GP, "Investigation of Microbial Contamination of Public Bath in Jongno-gu, Seoul", Journal of Environmental Health Science, 35: 162-168, 2009. https://doi.org/10.5668/JEHS.2009.35.3.162
  2. Korean statistical information service. available from: http://www.kosis.kr/. accessed June 9, 2009.
  3. Jawetz W, Melnick JL, Adelberg EA, Brooks GF, Butel JS and Ornston LN, Medical Microbiology, 18th ed., p215-217. Appleton & Lange, Norwalk, Connecticut/San Mateo, California, 1989.
  4. Chung HM, "Micrbial Control of Tapwater, Monitorning or Treatment?" J Korean Society on Water Quality, 183: 229-235, 2002.
  5. Falkinham JO. 3rd, "Epidemiology of infection by nontuberculous mycobacteria", Clin Microbiol Rev, 9:177-215, 1996.
  6. Kazda JF. "The principles of the ecology of mycobacteria. In: Ratledge C, Stanford J, editors. The biology of mycobacteria, Vol. II. London, United Kingdom, Academic Press, p. 323-341, 1983.
  7. Le Dantec C, Duguet JP, Montiel A, Dumoutier N, Dubrou S, and Vincent V, "Occurrence of mycobacteria in water treatment lines and in water distribution system", Appl Environ Microbiol, 68:5318-5325, 2002. https://doi.org/10.1128/AEM.68.11.5318-5325.2002
  8. Lee ES, Yoon TH, Lee MY, and Han SH, "Inactivation of Mycobacteria by UV Disinfection", J Korean Society on Water Quality, 24, No. 2, 2007.
  9. World Health Organization(WHO), Pathogenic Mycobacteria in water, IWA Publishing, London, UK, pp. 149-159. 2004.
  10. The Ministry of Health and welfare, The enforcement of the Public Health Control Law (Article 4), 2009.
  11. Falkinham III JO, Cheryl D. Norton and Mark W. Lechevallier, "Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria on drinking water distribution systems", Appl Environ Microbiol, 67:1225-1231, 2001. https://doi.org/10.1128/AEM.67.3.1225-1231.2001
  12. Choi SI, "Proposal of Basic Concept for Enhancement of Drinking Water Regulation", Journal of the korean society of water and wastewater, 16: 205-217, 2002.
  13. Chiang YC, Yang CY, Li C, Ho YC, Lin CK and Tsen HY, "Identification of Bacillus spp., Escherichia coli, Salmonella spp., Staphylococcus spp. and Vibrio spp. with 16S ribosomal DNA-based oligonucleotide array hybridization", Int J Food Microbiol, 107:131-13, 2006. https://doi.org/10.1016/j.ijfoodmicro.2005.04.028
  14. Maynard C Berthiaume F, Lemarchand K, Harel J, Payment P, Bayardelle P, Masson L, Brousseau R, "Waterborne Pathogen Detection by Use of Oligonucleotide-Based Microarrays", Appl Environ Microbiol, 71: 8548-8557, 2005. https://doi.org/10.1128/AEM.71.12.8548-8557.2005
  15. Meaysa CL Broersmab K, Nordina R, Mazumdera A, "Source tracking fecal bacteria in water: a critical review of current methods", Journal of Environmental Management, 73: 71-79, 2004. https://doi.org/10.1016/j.jenvman.2004.06.001
  16. Zwart G, van Hannen EJ, Kamst-van Agterveld MP, Van der Gucht K, Lindstrom ES, Van Wichelen J, Lauridsen T, Crump BC, Han SK, Declerck S, "Rapid Screening for Freshwater Bacterial Groups by Using Reverse Line Blot Hybridization", Appl. Environ. Microbiol, 61: 5875-5883, 2003.
  17. Choi SG, Song WH, Kang CH, Cho KB, Lee JS, Lee JH, Kim SI and Jee SI, "Identification of Nontuberculous Mycobacteria Existing in Public Bathroom Water by PCR-Restriction Fragment Length Polymorphism", The Korean Journal of Clinical Laboratory Sciences, 40:1-5, 2008.