DOI QR코드

DOI QR Code

Effect of Antler Development Stage on the Chemical Composition of Velvet Antler in Elk (Cervus elaphus canadensis)

  • Received : 2010.12.12
  • Accepted : 2011.04.08
  • Published : 2011.09.01

Abstract

This study was conducted to provide the basic information to allow improved scientific assessment of velvet antler's quality by investigating the change of chemical composition during different antler growth stages in elk (Cervus elaphus canadensis). Twenty four antlers were harvested from elk stags (aged 4-5 years) on 65 days (VA65), 80 days (VA80) and 95 days (VA95) after button casting, and the chemical composition of each antler was determined in five sections (top, upper, middle, base, and bottom). Crude protein and ether extract content was the highest in the top section, whereas ash content was the highest in the bottom section in all groups (p<0.05). Glycosaminoglycan (GAG) content was higher in the VA65 group than in the VA95 group in the upper section of antler (p<0.05). The collagen content was higher in the VA65 group compared to the VA95 group in the middle and bottom sections (p<0.05), and increased downward from the top to the bottom section. The proportions of certain amino acids, including aspartic acid, glutamic acid and isoleucine were higher (p<0.05), whereas proline and glycine were lower in the top section of antler compared to all other sections (p<0.05). The proportion of linoleic acid, 11,14,17-eicosatrienoic acid, total ${\omega}$-3 and ${\omega}$-6 fatty acids and polyunsaturated fatty acids (PUFAs) for all sections in the VA65 group was higher than in the VA95 group (p<0.05). These results suggested that the quality of velvet antler is strongly influenced by antler development stage.

Keywords

References

  1. Allen, M., K. Oberle, M. Grace, A. Russell and A. J. Adewale. 2008. A randomized clinical trial of elk velvet antler in rheumatoid arthritis. Biol. Res. Nurs. 9:254-261. https://doi.org/10.1177/1099800407309505
  2. AOAC. 1990. Official methods of analysis. 15th edn. Association of Official Analytical Chemists, Arlington, Virginia.
  3. Berbert, A. A., C. R. Kondo, C. L. Almendra, T. Matsuo and I. Dichi. 2005. Supplementation of fish oil and olive oil in patients with rheumatoid arthritis. Nutr. 21:131-136. https://doi.org/10.1016/j.nut.2004.03.023
  4. Bergman, I. and R. Loxley. 1962. Two improve and simple methods for the spectrophotometric determination of hydroxyproline. Anal. Chem. 35:1961-1965.
  5. Chapman, D. I. 1975. Antlers-bones of contention. Mamm. Rev. 5:121-172. https://doi.org/10.1111/j.1365-2907.1975.tb00194.x
  6. Choi, H. K., K. H. Kim, K. H. Kim, Y. S. Kim, M. W. Lee and W. K. Whang. 2006. Metabolomic differentiation of deer antlers of various origins by HNMR spectrometry and principal components analysis. J. Pharm. Biomed. Anal. 4:1047-1050.
  7. Cross, H. R., Z. L. Carpenter and G. C. Smith. 1973. Effect of intramuscular collagen and elastin on bovine muscle tenderness. J. Food Sci. 38:998-1003. https://doi.org/10.1111/j.1365-2621.1973.tb02133.x
  8. Currey, J. D. 1999. The design of mineralized hard tissues for their mechanical functions. J. Exp. Biol. 202:3285-3294.
  9. Elliott, J. L., J. M. Oldham, G. W. Asher, P. C. Molan and J. J. Bass. 1996. Effect of testosterone on binding of insulin-like growth factor-I (IGF-I) and IGF-II in growing antlers of fallow deer (Dama dama). Growth Regul. 6:214-221.
  10. Farndale, R. W., C. A. Sayer and A. J. Bsrett. 1982. A direct spectrophotometric assay for sulfated glycosaminoglycans in cartilage cultures. Connect. Tiss. Res. 9:247-248. https://doi.org/10.3109/03008208209160269
  11. Fletcher, T. J. 1986. Reproduction: seasonality. In: Management and Diseases of Deer (Ed. T. L. Alexander). Veterinary Deer Society, London. pp. 17-18.
  12. Goss, R. J. 1983. Developmental anatomy of antlers. In: Deer Antlers: Regeneration, Function and Evolution (Ed. R. J. Goss). Academics Press, New York. pp. 133-171.
  13. Ha, Y. W., B. T. Jeon, S. H. Moon and Y. S. Kim. 2003. Biochemical components among different fodders-treated antlers. Kor. J. Pharmacogn. 34:40-44.
  14. Ha, Y. W., B. T. Jeon, S. H. Moon, H. Toyoda, T. Toida, R. J. Linhardt and Y. S. Kim. 2005. Characterization of heparin sulfate from the unossified antler of Cervus elaphus. Carbohydr. Res. 340:411-416. https://doi.org/10.1016/j.carres.2004.11.011
  15. Hemmings, S. and X. Song. 2004. The effects of elk velvet antler consumption on the rat: Development, behaviour, toxicity and the activity of liver gamma-glutamyltranspeptidase. Comp. Biochem. Physiol. 138:105-112. https://doi.org/10.1016/j.cbpb.2004.03.002
  16. Hunter, G. A. 1991. Role of proteoglycan in the provisional calcification of cartilage. A review and reinterpretation. Clin. Orthop. Rel. Res. 262:256-280.
  17. Jeon, B. T., S. J. Kim, S. M. Lee, P. J. Park, S. H. Sung, J. M. Kim and S. H. Moon. 2009. Effect of antler growth period on the chemical composition of velvet antler in sika deer (Cervus nippon). Mamm. Biol. 74:374-380. https://doi.org/10.1016/j.mambio.2008.07.005
  18. Jeon, B. T. and S. H. Moon. 2006. A review on feeding system for deer production. JIFS. 3:39-44.
  19. Kay, R. N. B., M. Phillio, J. M. Suttie and G. Wenham. 1982. The growth and mineralization of antlers. J. Physiol. 322:4(Abstr.).
  20. Kosakaki, M. and Z. Yosizawa. 1979. A partial modification of the cartilage method of Bitter and Muir for quantization of hexuronic acids. Anal. Biochem. 93:295-298. https://doi.org/10.1016/S0003-2697(79)80154-2
  21. Landete-Castillejos, T., A. Garcia and L. Gallego. 2007. Body weight, early growth and antler size influence antler bone mineral composition of Iberian Red Deer (Cervus elaphus hispanicus). Bone 40:230-235. https://doi.org/10.1016/j.bone.2006.07.009
  22. Leeb, B. F., J. Sautner, I. Andel and B. Rintelen. 2006. Intravenous application of omega-3 fatty acids in patients with active rheumatoid arthritis. The ORA-1 trial. An open pilot study. Lipids 41:29-34. https://doi.org/10.1007/11745-006-5066-x
  23. Li, C. 2003. Development of deer antler model for biochemical research. Rec. Adv. Res. Updates 4:255-274.
  24. Miller, K. V., R. L. Marchinton and J. R. Beckwith. 1985. Variations in density and chemical composition of white-tailed deer antlers. J. Mamm. 66:693-701. https://doi.org/10.2307/1380795
  25. Moen, R. and J. Pastor. 1998. Simulating antler growth and energy, nitrogen, calcium and phosphorus metabolism in caribou. Rangifer, Special Issue 10:85-97.
  26. Moon, S. H., S. K. Kang, S. M. Lee, M. H. Kim and B. T. Jeon. 2004. A study on the seasonal comparison of dry matter intake, digestibility, nitrogen balance and feeding behavior in spotted deer fed forest by-product silage and corn silage. Asian-Aust. J. Anim. Sci. 17:57-65. https://doi.org/10.5713/ajas.2004.80
  27. Moreau, M., J. Dupuis, N. H. Bonneau and M. Lecuyer. 2004. Clinical evaluation of a powder of quality elk velvet antler for the treatment of osteoarthritis in dogs. Can. Vet. J. 45:133-139.
  28. Park, P. W. and R. E. Goins. 1994. In situ preparation of fatty acid methyl esters for analysis of fatty acid composition in foods. J. Food. Sci. 59:1262-1266. https://doi.org/10.1111/j.1365-2621.1994.tb14691.x
  29. Rucklidge, G. J., G. Milne, K. J. Bos, C. Farquharson and S. P. Robins. 1997. Deer antler does not represent a typical endochondral growth system: immunoidentification of collagen type X but little collagen type II in growing antler tissue. Comp. Biochem. Physiol. 118B:303-308.
  30. Schultz, S. R., M. K. Johnson, S. E. Feagley, L. L. Southern and T. L. Ward. 1994. Mineral content of Louisiana white-tailed deer. J. Wildl. Dis. 30:77-85. https://doi.org/10.7589/0090-3558-30.1.77
  31. Scott, J. E. 1960. Aliphatic ammonium salts in the assay of acidic polysaccharides from tissues. Methods Biochem. Anal. 8:145-197.
  32. Scott, J. E. and E. W. Hughes. 1981. Chondroitin sulfate from fossilized antlers. Nature 291:580-581. https://doi.org/10.1038/291580a0
  33. Sunwoo, H. H. 1998. Isolation, characterization and localization of glycosamines in growing antlers of wapiti (Cervus elaphus). Comp. Biochem. Physiol. Part B. 120:273-283. https://doi.org/10.1016/S0305-0491(98)10017-2
  34. Sunwoo, H. H., T. Nakano, R. J. Hudson and J. S. Sim. 1995. Chemical composition of antlers from Wapiti (Cervus elaphus). J. Agric. Food Chem. 43:2846-2849. https://doi.org/10.1021/jf00059a014
  35. Sunwoo, H. H., L. Y. M. Sim, T. Nakano, R. J. Hudson and J. S. Sim. 1997. Glycosaminoglycans from growing antlers of wapiti (Cervus elaphus). Can. J. Anim. Sci. 77:715-721. https://doi.org/10.4141/A97-033
  36. Wardale, R. J. and V. C. Duance. 1993. Characterization of porcine articular and growth plate collagens. J. Cell. Sci. 105:975-984.
  37. Warren, L. 1959. The thiobarbituric acid assay of sialic acids. J. Biol. Chem. 234:1971-1975.
  38. Weladji, R. B., O. Holand, G. Steinheim, J. E. Colman, H. Gjostein and A. Kosmo. 2005. Sexual dimorphism and intercohort variation in reindeer calf antler length is associated with density and weather. Oecologia 145:549-555. https://doi.org/10.1007/s00442-005-0155-8
  39. Zhang, Z. Q., Y. Zhang, B. X. Wang, H. O. Zhou, Y. Wang and H. Zhang. 1992. Purification and partial characterization of antiinflammatory peptide from pilose antler of Cervus Nippon Temminck. Acta Pharmacol. Sin. 27:321-324.

Cited by

  1. Nutrition of antler growth in deer vol.56, pp.6, 2016, https://doi.org/10.1071/AN15051
  2. Bioactive components of velvet antlers and their pharmacological properties vol.87, pp.None, 2011, https://doi.org/10.1016/j.jpba.2013.07.044
  3. Evolution of blood serum mineral composition during antler growth and rut as consequence of Cu supplementation in captive red deer and its effects in mature antler composition vol.59, pp.10, 2011, https://doi.org/10.1071/an18253
  4. Chemical Constituents, Antioxidant Activities, and Element Concentrations of Rusa Deer Velvet Antler Extracts vol.2020, pp.None, 2011, https://doi.org/10.1155/2020/3287347