DOI QR코드

DOI QR Code

Optimum Mix Design of Alkali-Activated Cement Mortar Using Bottom Ash as Binder

바텀애쉬를 결합재로 사용한 알칼리 활성화 시멘트 모르타르의 최적배합에 관한 연구

  • Received : 2011.02.22
  • Accepted : 2011.05.18
  • Published : 2011.08.31

Abstract

In this research, the possibility of using bottom ash as a binder for the alkali-activated cement mortar is studied. Several experiments were performed to investigate the variation of the material properties according to the mix proportion. In the experimental program, the flowability and compressive strength were evaluated for various values of water/ash ratio, activator/ash ratio, sodium silicate to sodium hydroxide ratio, curing temperature, and the fineness of bottom ash as the main variables. The experimental results showed that high strength of 40 MPa or greater could be achieved in $60^{\circ}C$ high temperature curing condition with proper flowability. For $20^{\circ}C$ ambient temperature curing, the 28 days compressive strength of approximately 30MPa could be obtained although the early-age strength development was very slow. Based on the results, the range of optimized mix design of bottom-ash based alkali-activated cement mortar was suggested. In addition, using the artificial neural network analysis, the flowability and compressive strength were predicted with the difference in the mix proportion of the bottom-ash based alkali-activated cement mortar.

이 연구에서는 알칼리 활성화 시멘트 모르타르에 대한 결합재로서 바텀애쉬의 적용성을 평가하였으며, 배합 구성에 따른 재료 특성 변화를 파악하기 위한 실험을 수행하였다. 바텀애쉬를 사용한 알칼리 활성화 시멘트 모르타르 실험에서는 물/바텀애쉬 비, 활성화제/바텀애쉬의 비, 수산화나트륨에 대한 규산나트륨의 비, 양생 온도, 바텀애쉬의 분말도를 주된 실험 변수로 하여 유동성과 강도 실험을 수행하였다. 그 결과, $60^{\circ}C$ 고온 양생을 할 경우에는 적절한 유동성과 함께 40 MPa 이상의 압축강도를 얻을 수 있음을 확인하였으며, $20^{\circ}C$ 상온 양생 시에도 초기 강도 발현은 매우 느리지만 재령 28일 강도 30 MPa 정도가 발현되었다. 또한 실험 결과로부터 바텀애쉬를 사용한 알칼리 활성화 시멘트 모르타르의 적정 최적 배합 범위를 도출하였으며, 이와 함께 실험 결과를 바탕으로 인공신경망 분석법을 적용하여 배합 구성 변화에 따른 유동성 및 압축강도의 변화를 예측하였다.

Keywords

References

  1. 이상수, 송하영, 이승민, "콘크리트 특성에 미치는 고분말도 플라이애쉬의 치환율 및 물-결합재비 영향에 관한 실험적 연구," 콘크리트학회 논문집, 21권, 1호, 2009, pp. 29-35. https://doi.org/10.4334/JKCI.2009.21.1.029
  2. 이광명, 권기헌, 이회근, 이승훈, 김규용, "고로슬래그를 함유한 콘크리트의 자기수축 특성," 콘크리트학회 논문집, 16권, 5호, 2004, pp. 621-626. https://doi.org/10.4334/JKCI.2004.16.5.621
  3. Shi, C., Krivenko, P. V., and Roy, D., Alkali-Activated Cements and Concretes, New York, Taylor & Francis, 2006.
  4. Davidovits, J., Geopolymer Chemistry & Applications, Institue Geopolymere, Saint-Quentin, France, 2008.
  5. 양근혁, 송진규, "알칼리 활성화를 이용한 무시멘트 콘크리트의 구조 성능 및 적용," 콘크리트학회지, 19권, 2호, 2007, pp. 42-48.
  6. 조병완, 박민석, 박승국, "알칼리 활성화에 의한 플라이애쉬 모르타르의 강도 발현 및 경화 메커니즘," 콘크리트학회 논문집, 18권, 4호, 2006, pp. 449-458.
  7. 강현진, 류금성, 고경택, 강수태, 박정준, 김성욱, 이장화, "시멘트를 사용하지 않은 플라이애쉬 알칼리 활성 모르타르의 압축강도에 미치는 알칼리 활성제 및 양생조건의 영향," 자원리싸이클링, 18권, 2호, 2009, pp. 39-50.
  8. Roy, D. M., "Alkali-Activated Cements, Opportunities and Challanges," Cement and Concrete Research, Vol. 29, No. 2, 1999, pp. 249-254. https://doi.org/10.1016/S0008-8846(98)00093-3
  9. Palomo, A., Macias, A., Blanco, M. T., and Puertas, F., "Physical, Chemical and Mechanical Characterisation of Geopolymers," In Proceedings of the 9th International Congress on the Chemistry of Cement, 1992, pp. 505-511.
  10. Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., and Rangan, B. V., "On the Development of Fly Ash-Based Geopolymer Concrete," ACI Materials Journal, Vol. 101, No. 6, 2004, pp. 467-472.
  11. Rees, C. A., Provis, J. L., Lukey, G. C., van Deventer, J. S. J., "The Mechanism of Geopolymer Gel Formation Investigated through Seeded Nucleation," Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 318, 2008, pp. 97-105. https://doi.org/10.1016/j.colsurfa.2007.12.019
  12. 조병완, 구자갑, 박승국, "알칼리 활성화에 의한 Fly ash와 Bottom ash의 경화 특성," 대한토목학회논문집, 제 25권, 2A호, 2005, pp. 289-294.
  13. 오동욱, 김백중, 이종구, 강경인, "알칼리 활성법에 의한 Bottom Ash의 경화 특성에 관한 실험적 연구," 한국건축시공학회 2008년 추계학술발표대회 논문집, 8권, 2호, 2008, pp. 103-106.
  14. Chindaprasirt, P., Jaturapitakkul, C., Chalee, W., and Rattanasak, U., "Comparative Study on the Characteristics of Fly ash and Bottom ash Geopolymers," Waste Management, Vol. 29, 2009, pp. 539-543. https://doi.org/10.1016/j.wasman.2008.06.023
  15. Sathonsaowaphak, A., Chindaprasirt, P., and Pimraksa, K., "Workability and Strength of Lignite Bottom ash Geopolymer Mortar," Journal of Hazardous Materials, Vol. 168, No. 1, 2009, pp. 44-50. https://doi.org/10.1016/j.jhazmat.2009.01.120
  16. Slavik, R., Bednarik, V., Vondruska, M., and Nemec, A., "Preparation of Geopolymer from Fluidized Bed Combustion Bottom ash," Journal of Materials Processing Technology, Vol. 200, 2008, pp. 265-270. https://doi.org/10.1016/j.jmatprotec.2007.09.008
  17. Lee, S. C., "Prediction of Concrete Strength Using Artificial Neural Networks," Engineering Structures, Vol. 5, 2003, pp. 849-857.
  18. 이방연, 김재홍, 김진근, "최소 볼록 집합을 이용한 데이터베이스 기반 콘크리트 최적 배합," 콘크리트학회 논문집, 20권, 5호, 2008, pp. 627-634. https://doi.org/10.4334/JKCI.2008.20.5.627
  19. Hecht-Nielsen, R., "Theory of the Backpropogation Neural Network," Proceedings of International Joint Conference on Neural Networks, USA, Vol. 1, 1989, pp. 593-605.
  20. Barron, A. R., "Universal Approximation Bounds for Superposition of a Sigmoidal Function," IEEE Transactions of Information Theory, Vol. 39, No. 3, 1993, pp. 930-945. https://doi.org/10.1109/18.256500

Cited by

  1. Study on Mechanical Properties of Geopolymer Concrete using Industrial By-Products vol.2, pp.1, 2014, https://doi.org/10.14190/JRCR.2014.2.1.052
  2. Properties of Normal-Strength Mortar Containing Coarsely-Crushed Bottom Ash Considering Standard Particle Size Distribution of Fine Aggregate vol.27, pp.5, 2015, https://doi.org/10.4334/JKCI.2015.27.5.531
  3. Isothermal Conduction Calorimetry Analysis of Alkali Activated Slag Binder vol.3, pp.3, 2015, https://doi.org/10.14190/JRCR.2015.3.3.237
  4. Study on Characteristics of Fine Bottom Ash Based Geopolymer Mortar vol.4, pp.4, 2016, https://doi.org/10.14190/JRCR.2016.4.4.418