References
- Ali, F., "Is High Strength Concrete More Susceptible to Explosive Spalling than Normal Strength Concrete in Fire?," Fire and Materials, Vol. 26, 2002, pp. 127-130. https://doi.org/10.1002/fam.791
- Mehta, P. K. and Monteiro, P. J. M. Concrete Microstructure, Properties, and Materials 3th Edition, The McGraw Hill, New York, 2006, pp. 72-75.
- Ban, S. and Anusavice, K. J. "Influence of Test Method on Failure Stress of Brittle Dental Materials," J. Dent Res 69, 1990, pp. 1791-1799. https://doi.org/10.1177/00220345900690120201
- Ritter, J. E., Jakus, K., Batakis, A., and Bandyopadhyay N., "Appraisal of Biaxial Strength Testing," J. Non-Cryst Solids, 38-39, 1980, pp. 419-424. https://doi.org/10.1016/0022-3093(80)90455-X
- ASTM C 1550, Standard Test Method for Flexural Toughness of Fiber-Reinforced Concrete (Using Centrally-Loaded Round Panel), ASTM, West Conshohocken, PA, 2002.
- 지광습, 오홍섭, 최진혁, "콘크리트의 순수 등방성 휨인장강도 시험법," 대한토목학회 논문집, 27권, 5A호, 2007, pp. 753-758.
- Zi, G., Oh, H., Park, and S. K., "Novel Indirect Tensile Test Method to Measure the Biaxial Tensile Strength of Concretes and Other Quasibrittle Materials," Cement and Concrete Research, Vol. 38, No. 6, 2008, pp. 751-756. https://doi.org/10.1016/j.cemconres.2008.02.002
- RTA (Roads and Traffic Authority of NSW) Specification T373, Round Determinate Panel Test, B-82, Shotcrete Work, 2000.
- ASTM F 394-78 (Reapproved 1996), Standard Test Method for Biaxial Flexure Strength (Modulus of Rupture) of Ceramic Substrates, American Society For Testing And Materials, 1996.
- Marshall, D. B., An Improved Biaxial Flexure Test for Ceramics, American Ceramics Society, Bulletin 59, 1980, pp. 551-553.
- Fessler, H. and Fricker, D. C., "A Theoretical Analysis of the Ring-on-Ring Loading Disk Test," J. Am. Ceram. Soc., Vol. 67, 1984, pp. 582-588(correction: 1988, 71(10), 904). https://doi.org/10.1111/j.1151-2916.1984.tb19598.x
- Willshaw, T. R., "Measurement of Tensile Strength of Ceramics," J. Am Ceram Soc., Vol. 51, No. 2, 1968, 111 pp. https://doi.org/10.1111/j.1151-2916.1968.tb11849.x
- Weibull, W., "A Statistical Theory of the Strength of Materials," Ingvetensk Akad. Handl. 151, 1939, pp. 1-45.
- Baant, Z. P. and Planas, J., "Fracture and Size Effect in Concrete and Other Quasibrittle Materials," CRC Press, Boca Raton and London, 1997, pp. 437-486.
- Baant, Z. P., "Probabilistic Modeling of Quasibrittle Fracture and Size Effect," Proc., 8th Int. Conf. on Structural Safety and Reliability (ICOSSAR), Newport Beach, Calif., R. B. Corotis, G. I. Schueller, and M. Shinozuka, eds., Swets and Zeitinger, Balkema, 2001, pp. 1-23.
- Baant, Z. P., "Probability Distribution of Energetic-Statistical Size Effect in Quasibrittle Fracture," Probab. Eng. Mech., Vol. 19, No. 4, 2004, pp. 307-319. https://doi.org/10.1016/j.probengmech.2003.09.003
- Wright, P. J. F., "The Effect of the Method of Test on the Flexural Strength of Concrete," Magazine of Concrete Research, 11, 1952, pp. 67-76.
- Neville, A. M., Properties of Concrete, In: (3rd Ed. ed.), Pitman Pub. Ltd., London, 1991, pp. 174-175.
- 지광습, 김지환, 오홍섭, "최적 시험체 형상을 고려한 개선된 콘크리트 등방휨인장강도 시험법," 콘크리트학회논문집, 21권, 4호, 2009, pp. 523-530. https://doi.org/10.4334/JKCI.2009.21.4.523
- 한국산업규격, 콘크리트의 압축 강도 시험 방법, KS F 2405, 기술표준원, 1964.
- 한국산업규격, 콘크리트의 강도 시험용 공시체 제작방법, KS F 2403, 기술표준원, 2005.
- Vitman, F. F. and Pukh, V. P., "A Method for Determining the Strength of Sheet Glass," Zavodskaya Laboratoriya, Vol. 29, 1963, pp. 863-867.
- Timoshenko, S. P. and Woinowsky-Krieger, S., Theory of Plates and Shells, 2nd Edition, McGraw-Hill, New York, 1959, pp. 63-67.
- Westergaard, H. M., "New Formulas for Stresses in Concrete Pavements of Airfields," ASCE Proceedings, 1947, pp. 425-439.
- Westergaard, H. M., "Analytical Tools for Judging Results of Structural Tests of Concrete Pavements," Public Roads, Vol. 14, No. l0, 1933, pp. 185-88.
- Westergaard, H. M., "Stresses in Concrete Pavements Computed by Theoretical Analysis," Public Roads, 7, 1926, pp. 25-35.