DOI QR코드

DOI QR Code

λ Matrix for Evaluating an Incomplete Bloc Design

불완비블록계획법을 평가하기 위한 λ행렬

  • Received : 20110100
  • Accepted : 20110300
  • Published : 2011.08.31

Abstract

Incidence matrix is a useful tool for presenting incomplete block designs; however, it is inadequate to use only an incidence matrix in examining whether a certain incomplete block design becomes a balanced incomplete block design or not. We can use a structural matrix as a useful tool to show whether a certain incomplete block design becomes a balanced incomplete block design or not. We propose an augmented incidence matrix and ${\lambda}$ matrix as another tools for evaluating incomplete block designs. Through the augmented incidenc matrix and ${\lambda}$ matrix, we can ascertain whether a certain incomplete block design becomes a balance incomplete block design or not.

발생행렬은 블완비블럭계획법을 나타내는 좋은 도구이나 우리가 발생행렬을 이용하여 관심의 대상인 블완비블럭계획법이 균형불완비블럭계획법이 되는 지를 알기는 충분하지 않다. 그래서 필요한 수단이 구조행렬이다. 불완비블럭계획법을 평가하기 위한 또 다른 수단으로서 우리는 확장발생행렬과 ${\lambda}$행렬을 제안할 수 있다. 확장발생행렬과 ${\lambda}$행렬을 통하여 우리는 관심의 대상인 블완비블럭계획법이 균형불완비블럭계획법이 되는 지를 명확히 밝힐 수가 있고, 그 패턴도 상세히 파악할 수 있게 된다.

Keywords

References

  1. 박성현 (2009). <개정판 현대실험계획법>, 민영사, 서울.
  2. 이우선 (1998). <최신실험설계>, 영풍문고, 서울.
  3. Dean, A. and Voss, D. (1999). Design and Analysis of Experiments, Springer, New York.
  4. Hinkelmann, K. and Kempthorne, O. (2008). Design and Analysis of Experiments, John Wiley & Sons, Hoboken.
  5. Onyiah, L. (2009). Design and Analysis of Experiments, CRC Press, Boca Raton.
  6. Rueda, D. R., Cotta, C. and Fernandez, A. (2009). Finding balanced incomplete block designs with metaheuristics, EvoCOP 2009, LNCS 5482, 156-167.
  7. Shu, X. and Raghavarao, D. (2010). Balanced and partially balanced incomplete block designs with autocorrelation errors, Journal of Statistical Planning and Inference, 140, 3230-3235. https://doi.org/10.1016/j.jspi.2010.04.021
  8. Spurrier, J. (2008). A-optimal and MV-optimal incomplete block designs for comparing successive treat- ments, Communications in Statistics-Simulation and Computation, 37, 1996-2009. https://doi.org/10.1080/03610910802283297