References
- Breiman, L. (1994). Heuristics of Instability in Model Selection, Technical Report, Statistics Department, University of California at Berkeley.
- Breiman, L. (1996). Bagging predictors, Machine Learning, 24, 123-140.
- Breiman, L. (2001). Random forests, Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
- Buja, A., Hastie, T. and Tibshirani, R. (1989). Linear smoothers and additive models (with discussion), Annals of Statistics, 17, 453-555. https://doi.org/10.1214/aos/1176347115
- Friedman, J., Hastie, T. and Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting, Annals of Statistics, 28, 337-374.
- Friedman, J., Hastie, T. and Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting, Annals of Statistics, 28, 337-374.
- Mammen, E., Linton, O. and Nielsen, J. P. (1999). The existence and asymptotic properties of a backfitting projection algorithm under weak conditions, Annals of Statistics, 27, 1443-1490.
- Mays, E. (2001). Handbook of Credit Scoring, Fitzroy Dearborn Pub, London.
- Severini, T. A. and Staniswalis, J. G. (1994). Quasi-Likelihood estimation in semiparametric models, Journal of American Statistical Association, 89, 501-511. https://doi.org/10.2307/2290852
- Thomas, L. C., Edelman, D. B. and Crook, J. N. (2002). Credit Scoring and Its Applications, SIAM Society of Industrial and Applied Mathematics, Philadelphia.
- Wang, L., Liu, X., Liang, H. and Carroll, R. (2011). Generalized additive partial linear models - polynomial spline smoothing estimation and variable selection procedures, Annals of Statistics, in print.
- Yu, K. and Lee, Y. K. (2010). Efficient semiparametric estimation in generalized partially linear additive models, Journal of Korean Statistical Society, 39, 299-304. https://doi.org/10.1016/j.jkss.2010.02.001
- Yu, K., Park, B. U. and Mammen, E. (2008). Smooth backfitting in generalized additive models, Annals of Statistics, 36, 228-260. https://doi.org/10.1214/009053607000000596