DOI QR코드

DOI QR Code

Approximate Friction and Gravity Compensation in Haptic Laparoscopic Surgery Simulator

햅틱 복강경 수술 시뮬레이터의 마찰력 및 중력 보상

  • Kim, Sang-Hyun (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Lee, Chang-Gyu (School of Mechatronics, Gwangju Institue of Science and Technology) ;
  • Kim, Ji-Suk (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Ryu, Je-Ha (School of Mechatronics, Gwangju Institue of Science and Technology)
  • 김상현 (서울대학교 기계항공공학부) ;
  • 이창규 (광주과학기술원 기전공학과) ;
  • 김지석 (서울대학교 기계항공공학부) ;
  • 류제하 (광주과학기술원 기전공학과)
  • Received : 2010.12.16
  • Accepted : 2011.05.02
  • Published : 2011.08.01

Abstract

Laparoscopic surgery is being used in various surgical fields because it minimizes scarring. Laparoscopic operations require practical hand skills, so surgeons train on animals and via surgery training tool sets. However, these tool sets do not give the surgeon the sensation of touching real organs. A recently developed laparoscope simulator has a high friction force along the translational axis and a high gravity force along the pitch axis, and therefore it does not permit the operator to control his or her hands delecately. In the paper, the friction force along the axes is auumed to depend on the veolcity, and the gravity force on the angle and distance. We develop a compensation model that combines the gravity and friction force models.

복강경을 이용한 수술법은 입원 기간 단축 및 상처의 감소라는 장점이 있지만 수술 도구 끝단의 움직임의 제한으로 인한 수술 난이도의 증가라는 단점이 있다. 이를 숙련시키기 위해 동물을 이용하여 대체수술을 하거나, Surgery training tool set을 이용하여 조작 기술 습득을 위한 훈련을 하고 있다. 하지만 이 방법들은 사람에게서 느껴지는 촉감을 그대로 재현하지 못한다. 따라서 본 논문은 4-자유도계의 복강경 수술 의료 훈련 시뮬레이터를 통해 원활한 햅틱 피드백을 제공하였다. 햅틱 장비의 기본 요구조건인 무중력, 무마찰 상태를 만족시키기 위해 장비의 중력 및 마찰력을 측정하였다. 이를 위해 의료 시뮬레이터의 모델링을 하여 시술기에 작용하는 중력과 마찰력을 측정하고 이를 선형화 시킨후 이를 토대로 보상기를 모델링하고 이를 검증하였다.

Keywords

References

  1. Clover, C. L., 1999, "A Control-System Architecture for Robots Used to Simulate Dynamic Force and Moment Interaction between Humans and Virtual Objects," IEEE Transactions on Systems Man and Cybernetics Part C Applications and Reviews, Vol. 29, No. 4, pp. 481-493. https://doi.org/10.1109/5326.798763
  2. Kwon, D.S. and Woo, K.Y., 2000, "Control of The Haptic Interface with Friction Compensation and Its Performance Evaluation," Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 2, pp. 955-960. https://doi.org/10.1109/IROS.2000.893142
  3. Webster, R., Haluck, R., Zoppetti, G., Benson, A., Boyd, J., Charles, N., Reeser, J. and Sampson, S, 2003, "A Haptic Surgical Simulator for Laparoscopic Cholecystectomy Using Real-time Deformable Organs," Proceedings of the IASTED International Conference on Biomedical Engineering, pp. 25-27.
  4. Sickle, K. R., McClusky III, D. A., Gallagher, A. G. and Smith, C. D., 2005, "Construct Validation of The ProMIS Simulator Using a Novel Laparoscopic Suturing Task," Surgical Endoscopy, Vol. 19, No. 9, pp. 1227-1231. https://doi.org/10.1007/s00464-004-8274-6
  5. Kim, L. H., Park, S. H. and Ha, S. D, 2004, "Haptic Rendering Techniques and Applications," Journal of the Korean Society of Precision Engineering, Vol. 21, No. 11, pp. 18-24.
  6. Choi, J. S., Song, S. J., Park, J. W, Beck, D. J., Kim, Y. W. and Sun, K. 2009, "Development of a haptic interface for laparoscopic surgery simulator," Conference on information and control system, pp. 121-122.
  7. Tustin, A., 1947, "The Effects of Backlash and of Speed-Dependent Friction on the Stability of Closed-Cycle Control Systems," Journal of the Institution of Electrical Engineers, Vol.94, No.1, pp. 143-151.
  8. Fang, L., Chen, W.J. and Cheang, S.U., 2001, "Friction Compensation for a Double Inverted Pendulum," IEEE International Conference On Control Applications, pp. 908-913. https://doi.org/10.1109/CCA.2001.973985