DOI QR코드

DOI QR Code

Numerical Analysis of Flow Fields for Optimum Design of Vehicle Vacuum Pump with Multivanes

자동차용 진공펌프 멀티 베인의 최적 설계를 위한 유동장 수치해석

  • Lim, Tae-Eun (School of Mechanical Engineering, Chungbuk Nat'l Univ.) ;
  • Lee, Kye-Bock (School of Mechanical Engineering, Chungbuk Nat'l Univ.)
  • Received : 2010.10.18
  • Accepted : 2011.07.06
  • Published : 2011.09.01

Abstract

A numerical study was conducted to determine the optimal design for a vehicle vacuum pump. The degree of vacuum was examined for different design factors such as the angle of vanes, number of vanes, angle and position of the pump inlet-outlet pipe, and angular rotational speed of vanes. The results show that there is a little difference in the degree of vacuum when the angle of vanes are changed, but an angular change in the outlet pipe reduces the pump loss. As the rotational speed is increased, the mass flow rate increases, but a high rotational speed does not result in the maximum degree of vacuum. In addition, when the number of vanes is increased, the scattering range of mass flow rate decreases and pressure drop is abated.

진공 펌프의 최적설계를 위해 수치해석을 수행하였다. 진공 베인 펌프 설계인자인 베인 각도 변화, 입출구 파이프의 위치와 각도 변화, 베인 개수 변화와 회전속도에 따른 진공도의 영향을 평가하였다. 베인 각도 변화는 동일한 체적의 유지로 최대 진공도 값에 큰 영향을 미치지 않았으나, 토출부의 각도 변화는 유동흐름의 간섭을 줄일 수 있고 이것으로 인한 펌프의 손실을 줄일 수 있다. 회전속도가 증가할수록 질량유량은 증가하였으나 고속 회전속도에서 최대 진공도 값을 나타내지는 않았다. 또한 베인의 개수가 증가할수록 질량유량의 변화폭은 감소하였고, 압력강하는 완화됨을 확인하였다.

Keywords

References

  1. Deton, J. D. and Dawes, W. N., 1998, "Computational Fluid Dynamics for Turbomachinery Design," Proc Instn Mech Engrs, Vol. 213, Part C, pp. 107-124.
  2. Cheng, H. P., Jou, R. Y., Chen, F. Z., Chang, Y. W., Iwane, A. and Hanaoka, T., 1999, "Flow Investigation of Siegbahn Vacuum Pump by CFD Methodology," The International Journal of Vacuum, Vol. 53, Issues 1-2, pp. 227-231. https://doi.org/10.1016/S0042-207X(98)00356-X
  3. Masuzawa, T., Tsukiya, T., Endo, S., Tatsumi, E., Taenaka, Y., Takano, H., Yamane, T. and Nishida, M., 1999, "Development of Designe Methods for a Centrifugal Blood Pump with a Fluid Dynamic Approach : Result in Hemolysis Test," The International Journal of Artificial Organs, Vol. 23, No.8. pp. 757-761. https://doi.org/10.1046/j.1525-1594.1999.06417.x
  4. Choi, Y., Lee, Y., Hong, S. and Kang, S., 2000, "Performance Analysis of the Centrifugal Pump Impeller using Commercial CFD Code," Conference on Research & Development of KFMA, pp. 305-311.
  5. Cho, C., Choi, S. and Cho, S., 2006, "An Experimental Study of Performance Characteristics on a Double Chamber Rotor Operated by High Pressure," Journal of Fluid Machinery, Vol. 9, No. 6, pp. 54-62. https://doi.org/10.5293/KFMA.2006.9.6.054
  6. Kim, H. and Jeong, K., "Simulation of Design Factor Effects on Performance of Vacuum System," Journal of the Korean Vacuum Society, Vol. 16, No. 6, pp. 405-413. https://doi.org/10.5757/JKVS.2007.16.6.405
  7. Won, C., Choi, S. and Hur, N., 2002, "Flow Analysis on the Vehicle Gerotor Type Oil Pump" The 2nd National Congress on Fluid Machinery, pp. 573-576.
  8. Kim, B. Y., 2004, "FLUENT," Journal of Fluid Machinery, Vol. 7, No. 5, pp. 73-77. https://doi.org/10.5293/KFMA.2004.7.5.073
  9. Lee, S. H. and Hur, N., 2007, "Numerical Study on Effects of Design Factors on Flow Characteristics of a Vane Pump," Journal of Fluid Machinery, Vol. 10, No. 6, pp. 24-31. https://doi.org/10.5293/KFMA.2007.10.6.024

Cited by

  1. Study on the driving torque and target pressure time of a rotary vane pump for brake booster vol.31, pp.12, 2017, https://doi.org/10.1007/s12206-017-1129-6
  2. Numerical study of a vane vacuum pump with two-phase flows vol.31, pp.7, 2017, https://doi.org/10.1007/s12206-017-0623-1
  3. A study on the development of a numerical model for a rotary vane vacuum pump for brake boosters vol.32, pp.8, 2018, https://doi.org/10.1007/s12206-018-0720-9