• Title/Summary/Keyword: 상용 CFD 코드

Search Result 111, Processing Time 0.026 seconds

CFD Analysis of EFD-CFD Workshop Case 3 using Commercial and Open Source CFD codes (상용 및 오픈소스 CFD 코드를 이용한 EFD-CFD 워크샵 Case 3 해석)

  • Kim, Jong Rok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.241-251
    • /
    • 2017
  • Computational fluid dynamics analysis was performed for the case 3 of the EFD-CFD workshop. Solvers were used for three commercial CFD codes(Star-CCM+, Fluent and CFX) and an open source CFD code(SU2). The grid were generated four types depending on the total cells using commercial grid generation code(Pointwise). Mach number of 0.4 and 0.8, 2 degree angle of attack and Mach number of 0.9, 1 degree angle of attack were calculated. Similar pressure coefficient curve and normal force coefficient were showed from the coarse grid to fine grid of four codes. But there is a difference in the drag coefficient. The position of the shock wave was predicted forward as the discretization order increased in calculations using Star-CCM+ and Fluent. The computation time to converge, Fluent, Star-CCM +, CFX are in order, and SU2 takes much time to converge.

Inlet Shape Design of Air Handling Unit Using Commercial CFD Code (상용 CFD코드를 이용한 공조기 입구 형상 설계)

  • Choi, Young-Seok;Ju, Jong-Il;Lee, Yong-Kab;Joo, Won-Gu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.54-59
    • /
    • 2002
  • A commercial CFD code is used to compute the 3-D viscous flow field within the inlet flow concentrator of the newly developed AHU (Air Handling Unit). To improve the performance of the AHU, the inlet air needs to be gradually accelerated to the fan's annular velocity without causing turbulence or flow separation. Three major geometric parameters were selected to specify the inlet shape of the AHU. The performance of the AHU could be measured by the inlet and outlet flow uniformity and the total pressure loss through the inlet flow concentrator. Several numerical calculations were carried out to determine the influence of the geometric parameters on the performance of the AHU. The best geometric values were decided to have efficient inlet shape with analyzing CFD calculation results.

Performance Analysis of the Centrifugal Pump Impeller Using Commercial CFD Code (상용 CFD코드를 이용한 원심펌프 임펠러의 성능해석)

  • Choi, Young-Seok;Lee, Yong-Kab;Hong, Soon-Sam;Kang, Shin-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.1 s.10
    • /
    • pp.38-45
    • /
    • 2001
  • A commercial CFD code is used to compute the 3-D viscous flow field within the impeller of a centrifugal pump. Several preliminary numerical calculations are carried out to determine the influence of the parameters such as the grid systems, the numerical schemes, the turbulence models and the shape of the vaneless diffusers at the design flow rate. The results of the preliminary study are used for the calculation of the off-design flow conditions. The circumferentially averaged results such as the radial and tangential velocities, the exit flow angle, the slip factor, the static pressure and the total pressure are compared with the experimental data at the impeller exit to discuss the influence of the prescribed parameters.

  • PDF

Performance Analysis of the Centrifugal Pump Impeller Using Commercial CFD Code (상용 CFD코드를 이용한 원심펌프 임펠러의 성능해석)

  • Choi, Young-Seok;Lee, Yong-Kab;Hong, Soon-Sam;Kang, Shin-Hyung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.305-311
    • /
    • 2000
  • A commercial CFD code is used to compute the 3-D viscous flow field within the impeller o( a centrifugal pump. Several preliminary numerical calculations are carried out to determine the influence of the parameters such as the grid systems, the numerical schemes, the turbulence models and the shape of the vaneless diffusers at the design flow rate. The results of the preliminary study are used for the calculation of the off-design flow conditions. The circumferentially averaged results such as the radial and tangential velocities, the exit flow angle, the slip factor, the static pressure and the total pressure are compared with the experimental data at the impeller exit to discuss the influence of the prescribed parameters.

  • PDF

Inlet Shape Design of Air Handling Unit Using Commercial CFD Code (상용 CFD코드를 이용한 공조기 입구형상의 설계)

  • Choi, Young-Seok;Ju, Jong-Il;Joo, Won-Gu
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.448-453
    • /
    • 2001
  • A commercial CFD code is used to compute the 3-D viscous flow field within the inlet flow concentrator of the newly developed AHU(Air Handling Unit). To improve the performance of the AHU, the inlet air needs to be gradually accelerated to the fan's annular velocity without causing turbulence or flow separation. Three major geometric parameters were selected to specify the inlet shape of the AHU. Several numerical calculations are carried out to determine the influence of the geometric parameters on the performance of the AHU. The performance of the AHU could be measured by the inlet and outlet flow uniformity and the total pressure loss through the inlet flow concentrator. The optimized nondimensionalized velocity profile through the inlet flow concentrator were used for the design of the AHU with the various volume flow rates.

  • PDF

소형 활주선의 CFD 수치해석 기법 연구

  • Im, Jun-Taek;Seo, Gwang-Cheol;Park, Geun-Hong;Kim, Sang-Won
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.216-217
    • /
    • 2018
  • 소형 활주선의 경우, 대형 저속선 대비 항주자세의 변화가 크기 때문에 CFD 해석시 저항성능과 운동성능 결과에 오차가 발생할 수 있다. 본 연구에서는 Warped 2 선형을 대상으로 상용 CFD 코드인 STAR-CCM+ v9.04를 사용한 CFD해석을 수행하여, 이를 모형시험 결과와 비교하여 오차를 확인하였고, 또한 오차의 원인을 분석했을 때, 선체 하부의 Numerical ventilation 현상과 Spray 영역에 문제가 있다고 판단하였다. 추후 연구에서는 오차 해결 방법으로 VOF Phase replacement 기법과 Spray 영역에 대한 격자 최적화 방법을 연구하고자 한다.

  • PDF

Numerical Study of Turbulent Flow in a Hydrocyclone (하이드로사이클론 내의 난류유동해석)

  • Ju, Jong-Il;Choi, Young-Seok;Lee, Yong-Kab;Kim, Tak-Hyun;Kim, sangyong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.2 s.19
    • /
    • pp.34-40
    • /
    • 2003
  • Numerical studies have been conducted to predict the solid-liquid separation efficiency of turbulent flow in a hydrocyclone using a commercial CFD code. To validate the CFD code, several preliminary numerical calculations are carried out to determine the influence of parameters such as grid systems, numerical schemes, and turbulence models. The numerical studies have been performed on the hydrocyclones with the different vortex finder geometries by changing the mass flow rate, and the results were compared with the experimental data. The results show that the CFD code can be used as a design tool to improve the performance of hydrocyclones.