A Random Matrix Theory approach to correlation matrix in Korea Stock Market

확률행렬이론을 이용한 한국주식시장의 상관행렬 분석

  • Received : 2011.03.25
  • Accepted : 2011.07.08
  • Published : 2011.08.01

Abstract

To understand the stock market structure it is very important to extract meaningful information by analyzing the correlation matrix between stock returns. Recently there has been many studies on the correlation matrix using the Random Matrix Theory. In this paper we adopt this random matrix methodology to a single-factor model and we obtain meaningful information on the correlation matrix. In particular we observe the analysis of the correlation matrix using the single-factor model explains the real market data and as a result we confirm the usefulness of the single-factor model.

주식수익률간의 상관행렬 분석을 통해 유의미한 정보를 추출 활용하는 것은 주식시장을 이해하는데 매우 중요하다. 최근 확률행렬이론을 이용 상관행렬을 분석하는 연구들이 많이 진행되어 왔는데, 본 논문에서는 단일 요인 모형을 확률행렬이론에 적용 한국주식시장에서 주식수익률간의 상관행렬에 관한 유의미한 정보를 추출하였다. 특히 단일 요인을 도입 상관행렬을 분석한 결과가 실제 데이터를 잘 설명함을 관찰하였고, 단일 요인 모형의 유용성을 확인하였다.

Keywords

References

  1. 변현우, 송치우, 한성권, 이태규, 오경주 (2009). 변동성 지수기반 유전자 알고리즘을 활용한 계층구조 포트폴리오최적화에 관한 연구. <한국데이터정보과학회지>, 20, 1049-1060.
  2. Conlon, T., Ruskin, H. J. and Crane, M. (2007). Random matrix theory and fund of funds portfolio optimisation. Physica A, 382, 565-576. https://doi.org/10.1016/j.physa.2007.04.039
  3. Conlon, T., Ruskin, H. J., and Crane, M. (2009). Cross-correlation dynamics in financial time series. Physica A, 388, 705-714. https://doi.org/10.1016/j.physa.2008.10.047
  4. Huang, H. T. and Cheng, W. H. (2005). Test of the CAPM under structural changes. International Economic Journal, 19, 523-541. https://doi.org/10.1080/10168730500381990
  5. Kim, K. K., Cho, M. H. and Park, E. S. (2008). Forecasting the volatility of KOSPI 200 using data mining. Journal of the Korean Data & Information Science Society, 19, 1305-1325.
  6. Laloux, L., Cizeau, P., Bouchaud, J. P. and Potters, M. (1999). Noise dressing of financial correlation matrices. Physical Review Letters, 83, 1467-1470. https://doi.org/10.1103/PhysRevLett.83.1467
  7. Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7, 77-91.
  8. Park, S. Y. and Lee, S. Y. (2007). Modelling KOSPI200 data based on GARCH(1,1) parameter change test. Journal of the Korean Data & Information Science Society, 18, 11-16.
  9. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L. A. N. and Stanley, H. E. (2000). A random matrix theory approach to financial cross -correlations. Physica A, 287, 374-382. https://doi.org/10.1016/S0378-4371(00)00376-9
  10. Sengupta, A. M. and Mitra, P. P. (1999). Distribution of singular values for some random matrices. Physical Review E, 60, 3389-3392. https://doi.org/10.1103/PhysRevE.60.3389
  11. Sharpe, W. (1963). A simplified model for portfolio analysis. Management Science, 9, 277-293. https://doi.org/10.1287/mnsc.9.2.277
  12. Shin, Y. K. (2006). An empirical study on stock trading value of each investor type in the korean stock market. Journal of the Korean Data & Information Science Society, 17, 1099-1106.
  13. Utsugi, A., Ino, K. and Oshikawa, M. (2004). Random matrix theory analysis of cross correlation in financial markets. Physical Review E, 70, 1-11.