DOI QR코드

DOI QR Code

An Approach of Ecological Niche to Analysis of Recognition of 5th Grade Elementary students for Conception of Photosynthesis

생태 지위적 접근을 통한 5학년의 광합성 개념 분석

  • Received : 2010.12.27
  • Accepted : 2011.06.01
  • Published : 2011.06.30

Abstract

There have been studies about conceptual ecology making a profound study of conceptual changes in learners' cognitive structure. Because learners' cognitive structure have been compared to ecology, it is natural to think that conception in learner's cognitive structure have a niche as species in ecology have niches. Therefore, it is necessary to study niche approach about conception that learners recognize in their cognitive structure. The purposes of this study were to identify relationships among conceptions that 5th grade elementary school students recognize about photosynthesis and to identify how these relationships among conceptions about photosynthesis change before and after a class of photosynthesis in curriculum in terms of an approach of ecological niche which are composed of 3 domains - diversity of conceptions, relevance and frequency rate of conceptions, and competition among conceptions. Open ended questionnaire was developed by 4 fields: photosynthetic place, photosynthetic products, photosynthetic materials needed and environment factors of photosynthesis. The subjects sampled in this study were 310 5th grade elementary students in 5 cites. Before and after classes in photosynthesis in science curriculum, students were asked to write down conceptions that they knew about the 4 fields of photosynthesis of questionnaire and to write down scales of relevance from 1 to 30 about how they think the conceptions are related to the field of photosynthesis. The results of this study showed the following: First, most students have had a variety of conceptions and commonly recognized 'light' and 'water' as concepts in photosynthesis. Second, students still recognized their preconceptions like 'soil' and 'root,' etc. that were far from scientific conceptions of photosynthesis although they took classes in photosynthesis. Third, students needed to take the various strategies of teachers because they did not recognized scientific conceptions appropriately about photosynthetic fields. Fourth, it appeared that photosynthetic conceptions recognized by students had status in terms of relevance and frequency rate of conceptions, and competition among conceptions, and that they looked like the niche of conceptions in their conceptual ecologies.

학습자의 개념 형성 요인을 심층적으로 분석하는 개념 생태 관련 연구들이 많이 진행되어 오고 있다. 학습자의 인지 구조를 생태계로 비유한다면, 인지 구조 속에 존재하는 개념은 생태계의 종으로 비유할 수 있다. 따라서 생태계 내 종이 생태 지위를 가지듯이, 학습자의 개념 생태 내 개념도 생태 지위를 가질 수 있다. 이 연구는 개념의 다양성, 개념의 관련성과 빈도율 변화, 개념 간 경쟁관계로 구성된 생태 지위적 접근을 통하여, 광합성 학습 전 후에 5학년들이 인식하는 광합성 개념 간 관계를 분석하였다. 설문지는 광합성 장소, 광합성 생성물질, 광합성 필요물질, 광합성 환경요인 네 영역으로 구성되어 있으며, 각 영역별로 알고 있는 개념과 그 개념의 관련성 정도를 점수(1~30 점)로 기입하도록 제작되었다. 5개 도시 소재 11개 초등학교의 5학년 11학급 총 310명의 학생들을 대상으로 설문하여 분석하였다. 연구 결과는 다음과 같다. 첫째, 학생들은 광합성에 '빛'과 '물'을 공통적으로 많이 인식하면서 다양한 개념들을 지니고 있었다. 둘째, 학습 후에도 학생들은 '뿌리', '바람' 등과 같은 오개념이 여전히 나타나고 있었으며, 광합성 영역별로 오개념과 과학 개념이 공존하고 있었다. 셋째, 학습을 통하여 '빛'에 대한 학생들의 인식이 높아지고 있지만, 광합성 영역에 따른 적절한 개념을 인식하지 못하고 있기 때문에 교사들의 지속적이면서 효율적인 교수 전략이 필요하다. 넷째, 학생들이 인식하는 개념들은 개념 생태내에서 위상을 갖고 복잡하게 얽혀져 있는 것으로 보아 생태 지위를 갖고 있는 것으로 판단된다.

Keywords

References

  1. 강경희, 이선경(2001). 개념변화 맥락을 구성하는 개념생태 상호작용에 관한 사례 연구. 한국과학교육학회지, 21(4), 745-756.
  2. 김미영, 이길재(2007). 생식과 유전 개념에 대한 고등학생들의 개념 생태 분석. 한국생물교육학회지, 35(4), 678-691.
  3. 김영찬, 김주영(2000). 다차원척도법의 활용방안 및 발전방향: 방법론적 관점에서. 소비자학연구, 11(4), 199-227.
  4. 김희정, 조연순(2001). 초등학생의 광합성 개념학습에서 TWA 비유 수업 모형의 효과. 한국과학교육학회지, 21(2), 444-458.
  5. 김우종, 강기훈(2009). 붓스트랩을 이용한 다차원 척도법의 효율성 연구. 한국데이터정보과학회지, 20(2), 301-309.
  6. 박기용, 안성식, 정기용(2006). 다차원척도법을 이용한 외식기업 경쟁요인 비교분석에 관한 연구. 외식경영연구, 9(4), 93-115.
  7. 박지은, 이선경(2007). 중학생의 힘의 개념변화 사례 연구: 개념생태적 접근. 한국과학교육학회지, 27(7), 592-608.
  8. 박현주(1996). 초등학교 학생들의 증발에 대한 개념 생태 연구. 한국초등과학교육학회지, 15(2), 215-222.
  9. 이호준, 변두원, 김창호(1998). 오대산 삼림식생의 종간친화력 및 서열분석. 한국생태학회지, 21(3), 291-300.
  10. 정영란, 강경리(1998). 광합성의 기본개념에 관한 학생들의 이해도 조사 및 오개념 분석. 한국생물교육학회지, 26(1), 1-7.
  11. 정화숙, 박현숙, 임영진, 김자림(2005). 제7차 교육과정에 의한 중등 과학 교과서의 광합성 영역에 대한 용어와 탐구의 연계성 분석. 한국생물교육학회지, 33(2), 196-208.
  12. 한준, 박찬웅 (2001). 개인과 이중성에 기초한 사회적 공간의 생태지위 분석. 조사연구, 2(1), 109-127.
  13. Canal, P. (1999). Photosynthesis and inverse respiration in plants: An inevitable misconception?. International Journal of Science Education, 21(4), 363-371. https://doi.org/10.1080/095006999290598
  14. Caramazza, A., & Shelton, J. R. (1998). Domain-specific knowledge systems in the brain: The animate-inanimate distinction. Journal of Cognitive Neuroscience, 10(1), 1-34. https://doi.org/10.1162/089892998563752
  15. Cepni, S., Tas, E., & Kose, S. (2006). The effects of computer-assisted material on students' cognitive levels, misconceptions and attitudes towards science. Computers & Education, 46(2), 192-205. https://doi.org/10.1016/j.compedu.2004.07.008
  16. Deniz, H., Donnelly, L. A., & Yilmaz, I. (2008). Exploring the factors related to acceptance of evolutionary theory among Turkish preservice biology teachers: Toward a more informative conceptual ecology for biological evolution. Journal of Research in Science Teaching, 45(4), 420-443. https://doi.org/10.1002/tea.20223
  17. Demastes, S. S., Good, R., & Peebles, P. (1995). Students' conceptual ecologies and the process of conceptual change in evolution. Science Education, 79(6), 637-666. https://doi.org/10.1002/sce.3730790605
  18. Disessa, A. A. (2002). Why "conceptual ecology" is a good idea. In M. Limon & L. Mason(Eds), Reconsidering conceptual change: Issues in theory and practice(PP.29-61). Netherlands: Kluwer.
  19. Driver, R. (1981). Pupils' alternative frameworks in science. International Journal of Science Education, 3(1), 93-101.
  20. Duit, R., & Treagust, D. F. (2003). Conceptual change: a powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671-688. https://doi.org/10.1080/09500690305016
  21. Griffard, P. B., & Wandersee, J. H. (2001). The tow-tier instrument on photosynthesis: What does it diagnose?. International Journal of Science Education, 23(10), 1039-1052. https://doi.org/10.1080/09500690110038549
  22. Hardesty, D. L. (1972). The human ecological niche. American Anthropologist, 74(3), 458-466. https://doi.org/10.1525/aa.1972.74.3.02a00150
  23. Hewson, P. W., & Hewson, A. G. A. (1984). The role of conceptual conflict in conceptual change and the design of science instruction. Instructional Science, 13, 1-13. https://doi.org/10.1007/BF00051837
  24. Kemp, R., Schot, J., & Hoogma, R. (1998). Regime shifts to sustainability through processes of niche formation: The approach of strategic niche management. Technology Analysis & Strategic Management, 10(2), 175- 195. https://doi.org/10.1080/09537329808524310
  25. Krall, R. M., Lott, K. H., & Wymer, C. L. (2009). Inservice elementary and middle school teachers' conceptions of photosynthesis and respiration. Journal of Science Teacher Education, 20, 41-55. https://doi.org/10.1007/s10972-008-9117-4
  26. Love, T. F. (1977). Ecological niche theory in sociocultural anthropology: A conceptual framework and an application. American Ethnologist, 4(1), 27-41 https://doi.org/10.1525/ae.1977.4.1.02a00020
  27. Magnani, L. (2007). Creating chances through cognitive niche construction: The role of affordances. Lecture Notes in Artificial Intelligence, 4693, 917-925.
  28. Masson, M. E. J. (1995). A distributed memory model of semantic priming. Journal of Experimental Psychology: Learning, Memory, and Cognition. 21(1), 3-23.
  29. Milne, G. R., & Mason, C. H. (1989). An ecological niche theory approach to the measurement of brand competition. Maketing Letters, 1(3), 267-281.
  30. Neufeld, P., & Foy, M. (2006). Historical reflections on the ascendancy of ADHD in North America, c. 1980 - c. 2005. British Journal of Educational Studies, 54(4), 449-470. https://doi.org/10.1111/j.1467-8527.2006.00354.x
  31. Nyland, B. (2009). Language experiences of preverbal children in Australian children centres. European Early Childhood Education Research Journal, 17(1), 111-124. https://doi.org/10.1080/13502930802689087
  32. Palmer, D. H. (1999). Exploring the link between students' scientific and nonscientific conceptions. Science Education, 83(6), 639-653. https://doi.org/10.1002/(SICI)1098-237X(199911)83:6<639::AID-SCE1>3.0.CO;2-O
  33. Park, H. J. (2007). Components of conceptual ecologies. Research in Science Education, 37(2), 217-237. https://doi.org/10.1007/s11165-006-9023-8
  34. Pata, K. (2009). Modeling spaces for selfdirected learning at university courses. Educational Technology & Society, 12(3), 23-43.
  35. Pinker, S. (2003). Language as an adaptation to the cognitive niche. In M. H. Christiansen, & S. Kirby (Eds), Language Evolution (pp 16-37). Oxford University Press.
  36. Raven, R. P. J. M., Heiskanen, E., Lovio, R., Hodson, M., & Brohmann, B. (2008). The contribution of local experiments and negotiation processes to field-level learning in emerging (niche) technologies. Bulletin of Science, Technology & Society, 28(6), 464-477. https://doi.org/10.1177/0270467608317523
  37. Reis, O. (2008). Families as niches during communism in east germany: Consequences for parent-child relationships during times of change. International Journal of Behavioral Development, 32(5), 412-421. https://doi.org/10.1177/0165025408093660
  38. Riemeier, T., & Gropengie er, H. (2008). On the roots of difficulties in learning about cell division: Process-based analysis of students' conceptual development in teaching experiments. International Journal of Science Education, 30(7), 923-939. https://doi.org/10.1080/09500690701294716
  39. Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Computing and Communications Review, 5(1), 3-55. https://doi.org/10.1145/584091.584093
  40. Slagsvold, T., & Wiebe, K. L. (2007). Learning the ecological niche. Proceeding of The Royal Society B, 274, 19-23. https://doi.org/10.1098/rspb.2006.3663
  41. Southerland, S. A., Johnston. A., & Sowell, S. (2006). Describing teachers' Conceptual ecologies for the nature of science. Science Education, 90(5), 874-906. https://doi.org/10.1002/sce.20153
  42. Sternberg, R. J. (2003). Cognitive psychology, 3/e. (김민식, 손영숙, 안서원 역, 2005). Thomson Learning, Inc.
  43. Strike, K. A., & Posner, G. J. (1985). A conceptual change view of learning and understand. In L. H. T. West, & A. L. Pines (Eds), Cognitive structure and conceptual change. London: Academy Press.
  44. Taber, K. S. (2001). Shifting sands: A case study of conceptual development as competition between alternative conceptions. International Journal of Science Education, 23(7), 731-753. https://doi.org/10.1080/09500690010006572
  45. Toulmin, S. (1972). Human understanding: The collective use and evolution of concepts. Oxford, UK: Clarendon Press.
  46. Tyson, L. M., Venville, G. J., Harrison, A. G. (1997). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81(4), 387-404. https://doi.org/10.1002/(SICI)1098-237X(199707)81:4<387::AID-SCE2>3.0.CO;2-8
  47. Vosniadou, S., & Ioannides, C. (1998). From conceptual development to science education: A psychological point of view. International Journal of Science Education, 20(10), 1213- 1230. https://doi.org/10.1080/0950069980201004
  48. Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62(11), 2868- 2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x
  49. Yenilmez, A., & Tekkaya, C. (2006). Enhancing students' understanding of photosynthesis and respiration in plant through conceptual change approach. Journal of Science Education and Technology, 15(1), 81-87. https://doi.org/10.1007/s10956-006-0358-8

Cited by

  1. 수업에 의해 변화되는 9학년 유전 개념의 생태 지위 분석 vol.31, pp.5, 2011, https://doi.org/10.14697/jkase.2011.31.5.680
  2. An Analysis of Conceptual Niche Overlap and Proximity of Concepts relatedto Sensory System according to Gender Differences vol.42, pp.4, 2011, https://doi.org/10.15717/bioedu.2014.42.4.398
  3. Comparison of Conceptual Networks in Plant Structure and Function of Elementary School Science Textbook and Students’ Learning vol.46, pp.3, 2011, https://doi.org/10.15717/bioedu.2018.46.3.330