References
-
A. Aldroubi, Q. Sun, and W. Tang, p-frames and shift invariant subspaces of
$L^p$ , J. Fourier Anal. Appl. 7 (2001), no. 1, 1-21. https://doi.org/10.1007/s00041-001-0001-2 -
C. de Boor, R. A. DeVore, and A. Ron, The structure of finitely generated shift-invariant spaces in
$L_2(R^d)$ , J. Funct. Anal. 119 (1994), no. 1, 37-78. https://doi.org/10.1006/jfan.1994.1003 - P. G. Casazza, The art of frame theory, Taiwanese J. Math. 4 (2000), no. 2, 129-201. https://doi.org/10.11650/twjm/1500407227
- P. G. Casazza, Modern tools for Weyl-Heisenberg (Gabor) frame theory, Adv. in Image. and Electron. Physics 115 (2001), 1-127. https://doi.org/10.1016/S1076-5670(01)80094-X
-
P. G. Casazza and O. Christensen, Weyl-Heisenberg frames for subspaces of
$L^2(R)$ , Proc. Amer. Math. Soc. 129 (2001), no. 1, 145-154. https://doi.org/10.1090/S0002-9939-00-05731-2 - P. G. Casazza, D. Han, and D. Larson, Frames for Banach spaces, The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999), 149-182, Contemp. Math., 247, Amer. Math. Soc., Providence, RI, 1999.
- P. G. Casazza and G. Kutyniok, Frames of subspaces, Wavelets, frames and operator theory, 87-113, Contemp. Math., 345, Amer. Math. Soc., Providence, RI, 2004.
- P. G. Casazza and M. C. Lammers, Bracket products for Weyl-Heisenberg frames, Advances in Gabor analysis, 71-98, Appl. Numer. Harmon. Anal., Birkhauser Boston, Boston, MA, 2003.
- O. Christensen, An introduction to Frames and Riesz Bases, Birkhauser, 2003.
- R. Duffin and A. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366. https://doi.org/10.1090/S0002-9947-1952-0047179-6
- H. G. Feichtinger and T. Strohmer, Gabor Analysis and Algorithms, Birkhauser, 1998.
- G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, 1995.
- G. B. Folland, Real Analysis, John Viley New York, 1984.
-
M. Frank and D, Larson, Frames in Hilbert
$C^*$ -modules and$C^*$ -algebras, J. Operator Theory 48 (2002), no. 2, 273-314. - E. Hernandez and G. Weiss, A First Course on Wavelets, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1996.
- E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Springer-Verlag, 1963.
- G. Honnouvo and S. Twareque Ali, Gabor-type frames from generalized Weyl-Heisenberg groups, preprint.
- R. A. Kamyabi Gol and R. Raisi Tousi, A range function approach to shift-invariant spaces on locally compact Abelian groups, Int. J. Wavelets. Multiresolut. Inf. Process, to appear.
- R. A. Kamyabi Gol and R. Raisi Tousi, Bracket products on locally compact Abelian groups, J. Sci. Islam. Repub. Iran 19 (2008), no. 2, 153-157.
-
R. A. Kamyabi Gol and R. Raisi Tousi,
${\varphi}$ -Factorable operators and Weyl-Heisenberg frames on LCA groups, preprint. - R. A. Kamyabi Gol and R. Raisi Tousi, The structure of shift invariant spaces on a locally compact Abelian group, J. Math. Anal. Appl. 340 (2008), no. 1, 219-225. https://doi.org/10.1016/j.jmaa.2007.08.039
- E. Kaniuth and G. Kutyniok, Zeros of the Zak transform on locally compact Abelian groups, Proc. Amer. Math. Soc. 126 (1998), no. 12, 3561-3569. https://doi.org/10.1090/S0002-9939-98-04450-5
- G. Kutyniok, Time Frequency Analysis on Locally Compact Groups, Ph. D. thesis, Padeborn University, 2000.
- G. Kutyniok and D. Labate, The theory of reproducing systems on locally compact Abelian groups, Colloq. Math. 106 (2006), no. 2, 197-220. https://doi.org/10.4064/cm106-2-3
-
A. Ron, and Z. Shen, Frames and stable bases for shift-invariant subspaces of
$L_2(R^d)$ , Canad. J. Math. 47 (1995), no. 5, 1051-1094. https://doi.org/10.4153/CJM-1995-056-1 - W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), no. 1, 437-452. https://doi.org/10.1016/j.jmaa.2005.09.039
- R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New york, 1980.