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φ-FRAMES AND φ-RIESZ BASES ON

LOCALLY COMPACT ABELIAN GROUPS

Rajab Ali Kamyabi Gol and Reihaneh Raisi Tousi

Abstract. We introduce φ-frames in L2(G), as a generalization of a-
frames defined in [8], where G is a locally compact Abelian group and

φ is a topological automorphism on G. We give a characterization of φ-
frames with regard to usual frames in L2(G) and show that φ-frames share
several useful properties with frames. We define the associated φ-analysis
and φ-preframe operators, with which we obtain criteria for a sequence

to be a φ-frame or a φ-Bessel sequence. We also define φ-Riesz bases in
L2(G) and establish equivalent conditions for a sequence in L2(G) to be
a φ-Riesz basis.

1. Introduction and preliminaries

The theory of frames was introduced by Duffin and Schaeffer [10] in the
early 1950s to deal with problems in nonharmonic Fourier series. There has
been renewed interest in the subject related to its role in wavelet theory and
a lot of new applications. Several kinds of frames have been introduced up
to now; e.g. frames in Hilbert C∗-modules (modular frames) [14], frames of
subspaces [7], G-frames [26], p-frames [1], frames for Banach spaces [6], a-
frames [8], and many others for different purposes. In this paper we define
and investigate φ-frames in L2(G), using the φ-bracket product, as a vector
valued inner product on L2(G) introduced in [19], where G is a locally compact
Abelian (which will be abbreviated to “LCA”) group and φ is a topological
automorphism on G. One of the nice things about φ-frames is the fact that
they are useful in studying Gabor systems in the way that there is a close
relationship between these frames and Gabor frames in L2(G). Indeed, our
results relate Gabor frames in L2(G), which have become a paradigm for the
spectral analysis associated with time frequency methods [6], to φ-frames. Our
construction is related to an extension of Casazza and Lammers’ definition of
a-frames, a > 0, on L2(R) in [8], to the more general setting of L2(G), in a new
and different approach. We characterize φ-frames in terms of the usual frames
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in L2(G) (Theorem 2.1 below), which reveals the above mentioned relation, and
we show that φ-frames have several useful properties in common with frames.
We also define φ-Riesz bases in L2(G) and establish equivalent conditions for a
sequence to be a φ-Riesz basis, through which we establish a relation between
φ-Riesz bases and usual Riesz bases in L2(G).

LetG be a LCA group and Ĝ denote the dual group ofG. We refer the reader
to the usual text books about locally compact groups [12, 16]. Let the Fourier

transformˆ: L1(G) −→ C0(Ĝ), f −→ f̂ , be defined by f̂(ξ) =
∫
G
f(x)ξ(x)dx.

The Fourier transform can be extended to a unitary isomorphism from L2(G)

to L2(Ĝ) known as the Plancherel transform [12, The Plancherel Theorem].
Let φ be a topological automorphism on G. Let L be a uniform lattice in G,
that is, a discrete subgroup of G with compact quotient group G/L. Then
obviously φ(L) is also a uniform lattice in G. Denote by φ(L)⊥ the annihilator

of φ(L) in Ĝ, i.e., φ(L)⊥ = {γ ∈ Ĝ; γ(φ(L)) = {1}}, which is a uniform lattice

in Ĝ (see [18, 21]). For a uniform lattice L in G, a fundamental domain is a
measurable set SL in G such that every x ∈ G can be uniquely written in the
form x = ks, where k ∈ L and s ∈ SL. The existence of a fundamental domain
for a uniform lattice in an LCA group is guaranteed by [22, Lemma 2].

Choosing the counting measure on L, a relation between the Haar measures
dx on G and dẋ on G/φ(L) is given by the following special case of Weil’s
formula [12]:

For f ∈ L1(G), we have
∑

k∈L f(xφ(k−1)) ∈ L1(G/φ(L)) and

(1.1)

∫
G

f(x)dx =

∫
G/φ(L)

∑
φ(k−1)∈φ(L)

f(xφ(k−1))dẋ,

where ẋ = xφ(L).
Let f, g ∈ L2(G). The φ-bracket product of f, g is defined by

(1.2) [f, g]φ(ẋ) =
∑
k∈L

fg(xφ(k−1))

for all x ∈ G. We define the φ-norm of f as ∥f∥φ(ẋ) = ([f, f ]φ(ẋ))
1/2. The

φ-bracket product is in fact a vector valued inner product on L2(G) (see [19,
Proposition 2.4]). In particular, Cauchy Schwartz Inequality holds for it, i.e.,

(1.3) |[f, g]φ| ≤ ∥f∥φ∥g∥φ
for f, g ∈ L2(G).

A sequence (gn)n∈N ⊆ L2(G) is called φ-orthonormal if [gn, gm]φ = 0 for all
n ̸= m ∈ N and ∥gn∥φ = 1 for all n ∈ N. A φ-orthonormal sequence (gn)n∈N
is called a φ-orthonormal basis if [f, gn]φ = 0 a.e. for all n ∈ N, implies f = 0
a.e..

[19, Proposition 14] asserts that L2(G) admits a φ-orthonormal basis.
One of the main tools in our studies is φ-factorable operators. For the sake

of completeness, we recall some of our results on φ-factorable operators on
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L2(G). For a detailed exposition of the φ-bracket product and φ-factorable
operators confer [19, 20].

For γ ∈ Ĝ, denote by Mγ the modulation operator on L2(G), i.e.,

Mγf(x) = γ(x)f(x)

for all f ∈ L2(G). Let U be a bounded operator from L2(G) to L2(E), where
E is a subgroup of G or G/φ(L). U is called φ-factorable if

(1.4) U(Mγg) = MγU(g) for all g ∈ L2(G), γ ∈ φ(L)⊥.

It is easily verified that if U : L2(G) → L2(G) is a bounded φ-factorable
operator, then its adjoint U∗ is also φ-factorable. Moreover,

(1.5) [U(f), g]φ = [f, U∗(g)]φ, a.e. for all f, g ∈ L2(G).

We have the following Riesz Representation Theorem ([20, Theorem 2.4]),
which characterizes all φ-factorable operators from L2(G) to L1(G/φ(L)).

Theorem 1.1. A bounded operator U : L2(G) → L1(G/φ(L)) is φ-factorable
if and only if there exists g ∈ L2(G) such that U(f) = [f, g]φ a.e. for all
f ∈ L2(G). Moreover ∥U∥ = ∥g∥.

Let us now define a φ-frame and a φ-Bessel sequence.

Definition 1.2. A sequence (fn)n∈N in L2(G) is a said to be a φ-frame if there
exist 0 < A,B < ∞, such that for every f ∈ L2(G),

(1.6) A∥f∥2φ(ẋ) ≤
∑
n∈N

|[f, fn]φ(ẋ)|2 ≤ B∥f∥2φ(ẋ)

for a.e. ẋ ∈ G/φ(L). A,B are called φ-frame bounds. Those sequences which
satisfy only the upper inequality in (1.6), are called φ-Bessel sequences. In this
case B is called φ-Bessel bound.

The rest of this paper is organized as follows: In Section 2 we investigate
φ-frames and φ-Bessel sequences in L2(G), where G is a second countable LCA
group and φ is a topological isomorphism on G. We characterize φ-frames in
terms of frames in L2(G) (Theorem 2.1). We also define φ-pre-frame and φ-
analysis operators. Then we study φ-frames and φ-Bessel sequences in terms
of these operators. In Section 3 we introduce φ-Riesz bases and give equivalent
conditions for a sequence in L2(G) to be a φ-Riesz basis (Theorem 3.4).

2. φ-Frames in L2(G)

Throughout this paper we always assume that G is a second countable LCA
group, L is a uniform lattice in G and φ is a topological isomorphism on G.

In this section we investigate φ-frames and characterize them with regard
to standard frames in L2(G). We then define the associated φ-analysis and
φ-preframe operators, with which we obtain criteria for a sequence to be a
φ-frame or a φ-Bessel sequence.

Here is the characterization of φ-frames in terms of frames in L2(G).
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Theorem 2.1. Let (fn)n∈N be a sequence in L2(G). Then the following are
equivalent.

(1) (fn)n∈N is a φ-frame.
(2) (Mγfn)n∈N,γ∈φ(L)⊥ is a frame.

Proof. Let (fn)n∈N be a φ-frame with bounds A,B and (gn)n∈N be a φ-ortho-
normal basis for L2(G). Define U : L2(G) → L2(G) by U(Mγgn) = Mγfn for
γ ∈ φ(L)⊥, n ∈ N. Note that Mγgn’s form an orthonormal basis for L2(G),
which guarantees that U is well defined. Then U is φ-factorable and so we have

(2.1) [U∗f, gn]φ = [f, U(gn)]φ = [f, fn]φ,

a.e.. Since (gn)n∈N is a φ-orthonormal basis

(2.2)

∥U∗f∥2φ(ẋ) =
∑
n∈N

|[U∗f, gn]φ(ẋ)|2

=
∑
n∈N

|[f, fn]φ(ẋ)|2

≤ B∥f∥2φ(ẋ)

for f ∈ L2(G) and a.e. ẋ ∈ G/φ(L). Integrating (2.2) over G/φ(L) and using
Weil’s formula, we have ∥U∗f∥22 ≤ B∥f∥22. That is, U∗ is bounded. Also U∗ is
one-to-one. Indeed, if U∗f = 0 for some f ∈ L2(G), then [U∗f, gn]φ = 0. So
by (2.1), [f, fn]φ = 0, which implies that f = 0, since (fn)n∈N is a φ-frame.

Similarly U∗−1

is bounded. Hence U∗ is an isomorphism (note that U∗ has
dense range). Now by [3, Theorem 4.1], {Mγfn}n∈N,γ∈φ(L)⊥ is a frame. This
completes the proof of (1) ⇒ (2). Let {Mγfn}n∈N,γ∈φ(L)⊥ be a frame. By [3,
Theorem 4.1], U∗ is an isomorphism. Thus using (2.2) we have

A∥f∥2φ(ẋ) ≤
∑
n∈N

|[f, fn]φ(ẋ)|2 ≤ B∥f∥2φ(ẋ)

for a.e. ẋ ∈ G/φ(L), in which A = ∥U∗−1∥−2, B = ∥U∗∥2. That is, (2) implies
(1). □

We now intend to define φ-pre-frame and φ-analysis operators. First, we
need to introduce a vector space which plays the role of l2(N) in the stan-
dard case. To this end, define l21(G/φ(L)) as the space of the sequences in
L2(G/φ(L)) convergent in L1(G/φ(L)), i.e.,

(2.3) l21(G/φ(L)) = {{gi}i∈N ⊆ L2(G/φ(L));

∫
G/φ(L)

∑
i∈N

|gi(ẋ)|2dẋ < ∞}.

l21(G/φ(L)) is an inner-product space with the inner product defined as follows:
[·, ·]l21(G/φ(L)) : l21(G/φ(L))× l21(G/φ(L)) → L1(G/φ(L)),

[{gi}, {hi}]l21(G/φ(L)) =
∑
i∈N

gihi
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for {gi}i∈N, {hi}i∈N ∈ l21(G/φ(L)). Note that
∑

i∈N gihi ∈ L1(G/φ(L)). In-
deed,

∥
∑
i∈N

gihi∥L1(G/φ(L)) ≤
∫
G/φ(L)

∑
i∈N

|gi(ẋ)||hi(ẋ)|dẋ

≤

(∫
G/φ(L)

∑
i∈N

|gi(ẋ)|2dẋ

)1/2(∫
G/φ(L)

∑
i∈N

|hi(ẋ)|dẋ

)1/2

< ∞.

For {gi}i∈N ∈ l21(G/φ(L)), define the pointwise norm by

∥{gi}i∈N∥l21(G/φ(L))(ẋ) =

(∑
i∈N

|gi(ẋ)|2
)1/2

,

and the uniform norm by

∥{gi}i∈N∥l21(G/φ(L)) =

(∫
G/φ(L)

∑
i∈N

|gi(ẋ)|2dẋ

)1/2

.

Let {fn}n∈N be a φ-bounded φ-Bessel sequence in L2(G). Define the φ-analysis
operator as the mapping Tφ : L2(G) → l21(G/φ(L)) given by

Tφf = {[f, fn]φ}n∈N.

Define θ : L2(G) → L1(G/φ(L)) by θ(f) = [Tφf, {gn}n∈N]l21(G/φ(L)) for some

sequence {gn}n∈N ∈ l21(G/φ(L)). Note that if Tφ is bounded, then θ is a
bounded φ-factorable operator. So by Riesz Representation Theorem for φ-
factorable operators (Theorem 1.1), there exists T ∗

φ({gn}) ∈ L2(G) with

∥T ∗
φ({gn})∥2 = ∥θ∥

such that θ(f) = [f, T ∗
φ({gn})]φ. Note that ∥Tφ∥ = ∥T ∗

φ∥. Indeed,
∥[Tφf, {gn}n∈N]l21(G/φ(L))∥L1(G/φ(L))

=

∫
G/φ(L)

|[Tφf, {gn}n∈N]l21(G/φ(L))(ẋ)|dẋ

=

∫
G/φ(L)

|
∑
n∈N

[f, fn]φ(ẋ)gn(ẋ)|dẋ

≤

(∫
G/φ(L)

∑
n∈N

|[f, fn]φ(ẋ)|2dẋ

)1/2(∫
G/φ(L)

∑
n∈N

|gn(ẋ)|2dẋ

)1/2

= ∥Tφf∥l21(G/φ(L))∥{gn}n∈N∥l21(G/φ(L)).

Hence

∥T ∗
φ({gn})∥2 = ∥θ∥

= sup∥f∥2≤1∥[Tφf, {gn}n∈N]l21(G/φ(L))∥L1(G/φ(L))
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≤ ∥Tφ∥∥{gn}∥l21(G/φ(L)).

That is, ∥T ∗
φ∥ ≤ ∥Tφ∥. Also obviously, Tφ = T ∗∗

φ . So ∥Tφ∥ = ∥T ∗
φ∥.

To obtain the φ-preframe operator T ∗
φ explicitly, we calculate as follows.

Let f ∈ L2(G), {gi}i∈N ∈ l21(G/φ(L)). Then we have

[f, T ∗
φ({gn})]φ(ẋ) = [Tφf, {gn}n∈N]l21(G/φ(L))(ẋ)

=
∑
n∈N

Tφf(ẋ)gn(ẋ)

=
∑
n∈N

[f, fn]φ(ẋ)gn(ẋ)

= [f,
∑
n∈N

fngn]φ(ẋ).

Thus ∫
G/φ(L)

[f, T ∗
φ({gn})]φ(ẋ)dẋ =

∫
G/φ(L)

[f,
∑
n∈N

fngn]φ(ẋ)dẋ.

That is,

⟨f, T ∗
φ({gn})⟩L2(G) = ⟨f,

∑
n∈N

fngn⟩L2(G).

Hence

(2.4) T ∗
φ({gn}) =

∑
n∈N

fngn.

T ∗
φ is called the φ-preframe operator.
In the following proposition we characterize φ-Bessel sequences in terms

of the φ-preframe operator. To be more precise, we show that a φ-bounded
sequence is φ-Bessel if and only if the φ-preframe operator is bounded.

Remark 2.2. (i) For f ∈ L2(G) we have

∥f∥φ(ẋ) = sup{|[f, g]φ(ẋ)|; ∥g∥φ(ẋ) ≤ 1}
for a.e. ẋ ∈ G/φ(L). Indeed, by Cauchy Schwartz Inequality (1.3) we have

sup{|[f, g]φ(ẋ)|; ∥g∥φ(ẋ) ≤ 1} ≤ ∥f∥φ(ẋ)
for a.e. ẋ ∈ G/φ(L). Also

sup{|[f, g]φ(ẋ)|; ∥g∥φ(ẋ) ≤ 1} ≥ |[f, f

∥f∥φ
]φ(ẋ)| = ∥f∥φ(ẋ)

for a.e. ẋ ∈ G/φ(L).
(ii) By a similar argument as in the standard L2-space theory it is verified

that (L2(G), ∥ · ∥φ) is a Banach space.

We say g ∈ L2(G) is φ-bounded if there exists M > 0 so that ∥g∥φ ≤ M
a.e.. Note that for f, g ∈ L2(G) the function [f, g]φg need not generally be in
L2(G). But if f, g, h ∈ L2(G) and g, h are φ-bounded, then [f, g]φh ∈ L2(G)
(see [19]).
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Proposition 2.3. Let (fn)n∈N be a φ-bounded sequence in L2(G). Then
(fn)n∈N is φ-Bessel with bound B if and only if T ∗

φ is a well defined bounded

operator from l2(G/φ(L)) into L2(G) and ∥Tφ∥ ≤
√
B.

Proof. Let (fn)n∈N be a φ-Bessel sequence with bound B in L2(G). Assume
that (gn)n∈N ∈ l21(G/φ(L)), n ∈ N. Then for m,n ∈ N, n ≥ m, we have

∥
n∑

i=1

gifi −
m∑
i=1

gifi∥φ(ẋ)

= ∥
n∑

i=m+1

gifi∥φ(ẋ)

= sup∥g∥φ≤1|[
n∑

i=m+1

gifi, g]φ(ẋ)|

= sup∥g∥φ≤1|
n∑

i=m+1

gi[fi, g]φ(ẋ)|

≤

(
n∑

i=m+1

|gi(ẋ)|2
)1/2

sup∥g∥φ≤1

(
n∑

i=m+1

|[fi, g]φ(ẋ)|2
)1/2

≤
√
B

(
n∑

i=m+1

|gi(ẋ)|2
)1/2

.

So
∑n

i=1 gifin∈N is Cauchy in (L2(G), ∥·∥φ) and therefore convergent. Thus T ∗
φ

is well defined. Also obviously ∥T ∗
φ∥ ≤ B. For the converse assume T ∗

φ and so Tφ

is bounded. Then ∥Tφ(hf)∥l2(G/φ(L)) ≤ ∥Tφ∥∥hf∥2 for every h ∈ L∞(G/φ(L)).
Therefore,∫

G/φ(L)

∑
n∈N

|[hf, fn]φ(ẋ)|2dẋ ≤
∫
G/φ(L)

∥hf∥2φ(ẋ)∥Tφ∥2dẋ.

That is,∫
G/φ(L)

|h(ẋ)|2
∑
n∈N

|[f, fn]φ(ẋ)|2dẋ ≤
∫
G/φ(L)

|h(ẋ)|2∥f∥2φ(ẋ)∥Tφ∥2dẋ

for every h ∈ L∞(G/φ(L)). Hence∑
n∈N

|[f, fn]φ(ẋ)|2 ≤ B∥f∥2φ(ẋ)

for a.e. ẋ ∈ G/φ(L), where B = ∥Tφ∥2. So (fn)n∈N is φ-Bessel. □
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Let (fn)n∈N be a φ-frame. Assume that each fn, n ∈ N is φ-bounded in
L2(G). The φ-frame operator defined by Sφ := T ∗

φTφ is bounded. Indeed,

[Sφf, f ]φ = [
∑
n∈N

[f, fn]φfn, f ]φ

=
∑
n∈N

[f, fn]φ[f, fn]φ

=
∑
n∈N

|[f, fn]φ|2.

So we have
A[f, f ]φ ≤ [Sφf, f ]φ ≤ B[f, f ]φ,

which implies

A

∫
G/φ(L)

[f, f ]φ(ẋ)dẋ ≤
∫
G/φ(L)

[Sφf, f ]φ(ẋ)dẋ ≤ B

∫
G/φ(L)

[f, f ]φ(ẋ)dẋ.

Therefore, AI ≤ Sφ ≤ BI. By a standard argument as in the frame theory Sφ

is invertible and B−1I ≤ S−1
φ ≤ A−1I.

We can now characterize φ-frames with the aid of the φ-preframe operator.

Proposition 2.4. Let (fn)n∈N be a φ-bounded sequence in L2(G). Then
(fn)n∈N is a φ-frame if and only if T ∗

φ is well defined, bounded and onto.

Proof. Let fn be a φ-frame. Then by the above remarks Sφ is onto and so is
T ∗
φ. The rest follows from Proposition 2.3.

Conversely, we have f = SφS
−1
φ f =

∑
n∈N[S

−1
φ f, fn]φfn, so

∥f∥2φ(ẋ) = [f, f ]φ(ẋ)

= [
∑
n∈N

[S−1
φ f, fn]φfn, f ]φ(ẋ)

=
∑
n∈N

[S−1
φ f, fn]φ(ẋ)[fn, f ]φ(ẋ)

≤

(∑
n∈N

|[S−1
φ f, fn]φ(ẋ)|2

)1/2(∑
n∈N

|[fn, f ]φ(ẋ)|2
)1/2

≤ ∥Tφ(S
−1
φ f)∥l2(G/φ(L))(ẋ)

(∑
n∈N

|[fn, f ]φ(ẋ)|2
)1/2

≤ ∥Tφ∥∥S−1
φ ∥∥f∥φ(ẋ)

(∑
n∈N

|[fn, f ]φ(ẋ)|2
)1/2

for a.e. ẋ ∈ G/φ(L). That is,

A∥f∥2φ(ẋ) ≤
∑
n∈N

|[fn, f ]φ(ẋ)|2,
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where A = ∥Tφ∥−2∥S−1
φ ∥−2. Now Proposition 2.3 completes the proof. □

Next we consider the case when two φ-Bessel sequences may also be φ-
frames.

Proposition 2.5. Let (fn)n∈N and (gn)n∈N be two φ-bounded φ-Bessel se-
quences in L2(G). If f =

∑
n∈N[f, gn]φfn, a.e. for all f ∈ L2(G), then both

(fn)n∈N and (gn)n∈N are φ-frames.

Proof. Let us denote by B the φ-Bessel bound of (fn)n∈N. For all f ∈ L2(G),
we have

∥f∥4φ(ẋ) = [f, f ]2φ(ẋ)

= [
∑
n∈N

[f, gn]φfn, f ]
2
φ(ẋ)

= (
∑
n∈N

[f, gn]φ(ẋ)[fn, f ]φ(ẋ))
2

≤
∑
n∈N

|[f, gn]φ(ẋ)|2
∑
n∈N

|[fn, f ]φ(ẋ)|2

≤ B∥f∥2φ(ẋ)
∑
n∈N

|[f, gn]φ(ẋ)|2.

That is,

B−1∥f∥2φ(ẋ) ≤
∑
n∈N

|[f, gn]φ(ẋ)|2

for every f ∈ L2(G), for a.e. ẋ ∈ G/φ(L). Hence (gn)n∈N is a φ-frame. A
similar argument shows that (fn)n∈N is also a φ-frame. □

It is clear that every φ-orthonormal basis is a Parseval φ-frame, but the
converse is not true.

Example 2.6. Consider the LCA group G = R+. As a uniform lattice in
G we choose L = {2n; n ∈ Z}. Then L⊥ = Z. We can choose SL := [1, 2)
as a fundamental domain for L in G. Let φ : R+ → R+ be the topological
automorphism defined by φ(x) = x2. Let (fn)n∈N be a φ-orthonormal basis
for L2(G) (e.g. consider the orthonormal basis {MγTkχSL

; (k, γ) ∈ L × L⊥},
as in [23, Theorem 3.1.7] for L2(G), where Mγ is the modulation operator.
By [19, Theorem 14], {TkχSL

; k ∈ L} is a φ-orthonormal basis for L2(G)).
Then {f1, 1√

2
f2,

1√
2
f2,

1√
3
f3,

1√
3
f3,

1√
3
f3, . . .} is a Parseval φ-frame but not a

φ-orthonormal basis.

It is easy to see that if (fn)n∈N is a Parseval φ-frame and ∥fn∥φ = 1 a.e. for
every n ∈ N, then (fn)n∈N is a φ-orthonormal basis.
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3. φ-Riesz Bases in L2(G)

Our goal in this section is to define and investigate φ-Riesz bases in L2(G),
applying φ-factorable operators.

Riesz bases in L2(R) have several equivalent definitions (see [9, 15, 27]). The
main result of this section (Theorem 3.4), sets out equivalent conditions for a
sequence in L2(G) to be a φ-Riesz basis, where G is a second countable LCA
group and φ is a topological automorphism on G. We start with a definition.

Definition 3.1. A sequence (fn)n∈N in L2(G) is said to be a φ-Riesz basis
if there exists a φ-orthonormal basis (gn)n∈N and a φ-factorable operator U :
L2(G) → L2(G), which is a topological automorphism such that U(gn) = fn
for every n ∈ N.

We introduce a φ-complete (φ-total) sequence in L2(G) as follows:

Definition 3.2. Given a sequence (fn)n∈N ⊆ L2(G), by span∥·∥φ(fn) = L2(G)
we mean that for every f ∈L2(G) there exists a sequence {hn}n∈N∈ l21(G/φ(L)),
such that f =

∑∞
n=1 hnfn, a.e. We say a sequence (fn)n∈N ⊆ L2(G) is φ-

complete (φ-total) in L2(G), if span∥·∥φ(fn) = L2(G).

The following lemma will be needed in the proof of Theorem 3.4.

Lemma 3.3. Suppose U is a bounded φ-factorable operator on L2(G). For
every f ∈ L2(G), we have ∥Uf∥φ ≤ ∥U∥∥f∥φ a.e.

Proof. For every φ-periodic h ∈ L∞(G), we have∫
G/φ(L)

|h(ẋ)|2∥U(f)∥2φ(ẋ)dẋ

=

∫
G/φ(L)

∑
k∈L

|U(f)(xφ(k−1))|2|h(xφ(k−1))|2dẋ

=

∫
G/φ(L)

∑
k∈L

|U(hf)(xφ(k−1))|2dẋ

= ∥U(hf)∥22
≤ ∥U∥2∥hf∥22

= ∥U∥2
∫
G

|hf(x)|2dx

= ∥U∥2
∫
G/φ(L)

∑
k∈L

|hf(xφ(k−1))|2dẋ

= ∥U∥2
∫
G/φ(L)

|h(ẋ)|2∥f∥2φ(ẋ)dẋ,

which obviously completes the proof. □
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In the following theorem we establish equivalent conditions for a sequence
in L2(G) to be a φ-Riesz basis. As a matter of fact Theorem 3.4 gives a
characterization of φ-Riesz bases with regard to standard Riesz bases in L2(G),
which implies that a φ-Riesz basis shares many useful properties with a Riesz
basis.

Theorem 3.4. Let (fn)n∈N be a sequence in L2(G). The following are equiv-
alent.

(1) (fn)n∈N is φ-complete, and there exist positive constants A and B such
that for any sequence {hn}n∈N ∈ l21(G/φ(L)) one has

(3.1) A
∞∑

n=1

|hn|2 ≤ ∥
∞∑

n=1

hnfn∥2φ ≤ B
∞∑

n=1

|hn|2 a.e.

(2) (fn)n∈N is a φ-Riesz basis.
(3) (Mγfn)γ∈φ(L)⊥,n∈N is a Riesz basis in L2(G).

Proof. (1)⇒ (2) Let (en)n∈N be a φ-orthonormal basis in L2(G). Then by [19,

Theorem 14], span∥·∥φ(en) = L2(G). Define U : L2(G)(= span∥·∥φ(en)) →
L2(G) by U(

∑∞
n=1 hnen) =

∑∞
n=1 hnfn, where {hn}n∈N ∈ l21(G/φ(L)). Then

U is bounded. In fact, by (3.1)

∥U(
∞∑

n=1

hnen)∥2φ = ∥
∞∑

n=1

hnfn∥2φ

≤ B

∞∑
n=1

|hn|2

= B∥
∞∑

n=1

hnen∥2φ, a.e.,

and so

∥U(

∞∑
n=1

hnen)∥22 =

∫
G/φ(L)

∥U(

∞∑
n=1

hnen)∥2φ(ẋ)dẋ

≤ B

∫
G/φ(L)

∥
∞∑

n=1

hnen∥2φ(ẋ)dẋ

= B∥
∞∑

n=1

hnen∥22

for any {hn}n∈N ∈ l21(G/φ(L)). That is, ∥U∥ ≤
√
B. Now define S : L2(G)(=

span∥·∥φ(fn)) → L2(G) by S(
∑∞

n=1 hnfn) =
∑∞

n=1 hnen, where {hn}n∈N ∈
l21(G/φ(L)). Hence by (3.1) we get

∥S(
∞∑

n=1

hnfn)∥2φ = ∥
∞∑

n=1

hnen∥2φ
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=

∞∑
n=1

|hn|2

≤ 1/A∥
∞∑

n=1

hnfn∥2φ, a.e.

This implies that S is bounded on L2(G) and ∥S∥ ≤
√
1/A. Also obviously,

SU = I and US = I on L2(G). Hence U is a topological isomorphism, which
is clearly φ-factorable and U(en) = fn for every n ∈ N.

(2)⇒ (3) Choose a φ-orthonormal basis (en)n∈N for L2(G) and the corre-
sponding topological automorphism U which is a φ-factorable operator and
U(en) = fn for every n ∈ N, as in Definition 3.1. By [19, Theorem 14],
(Mγfn)γ∈φ(L)⊥,n∈N is an orthonormal basis for L2(G), and since U is φ-factor-
able

U(Mγen) = MγU(en) = Mγfn

for every n ∈ N, γ ∈ φ(L)⊥. So (Mγfn)γ∈φ(L)⊥,n∈N is a Riesz basis.
(3)⇒ (2) Let Sφ(L) be a fundamental domain for φ(L). By [23, Theo-

rem 3.1.7], the system (MγTφ(k)χSφ(L)
)k∈L,γ∈φ(L)⊥ is an orthonormal basis

for L2(G), where Tφ(k)χSφ(L)
is the translation of χSφ(L)

by φ(k). Define

U : L2(G) → L2(G) by U(MγmTφ(kn)χSφ(L)
) = Mγmfn, m, n ∈ N. Obviously,

U is a φ-factorable operator. Moreover, by [19, Theorem 14], (Tφ(k)χSφ(L)
)k∈L

is a φ-orthonormal basis for L2(G), and obviously U(Tφ(kn)χSφ(L)
) = fn for ev-

ery n ∈ N. Finally since (Mγfn)γ∈φ(L)⊥,n∈N is a Riesz basis, U is a topological
automorphism.

(2)⇒ (1) Suppose (en)n∈N is a φ-orthonormal basis and U is the correspond-
ing topological automorphism which is a φ-factorable operator and U(en) = fn
for every n ∈ N, as in the Definition 3.1. Let {hn}n∈N ∈ l21(G/φ(L)). Then
using Lemma 3.3

∥
∞∑

n=1

hnfn∥2φ = ∥
∞∑

n=1

hnU(en)∥2φ

= ∥U(

∞∑
n=1

hnen)∥2φ

≤ ∥U∥2∥
∞∑

n=1

hnen∥2φ

= ∥U∥2
∞∑

n=1

|hn|2, a.e.

On the other hand
∞∑

n=1

|hn|2 = ∥
∞∑

n=1

hnen∥2φ
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= ∥U−1U(

∞∑
n=1

hnen)∥2φ

≤ ∥U−1∥2∥U(
∞∑

n=1

hnen)∥2φ

= ∥U−1∥2∥
∞∑

n=1

hnfn∥2φ, a.e.

So (3.1) holds. Moreover (fn)n∈N is φ-complete. Indeed, given any f ∈ L2(G),
there exists a unique g ∈ L2(G) with U(g) = f (since U is one-to-one and
onto). Write g =

∑∞
n=1[g, en]φen as in [19, Theorem 18]. Then hn = [g, en]φ ∈

L∞(G/φ(L)) for every n ∈ N and by Bessel’s Inequality ([19, Theorem 11])
∞∑

n=1

|hn(ẋ)|2 ≤ ∥f∥φ(ẋ) < ∞

for a.e. ẋ ∈ G/φ(L). Also

f = U(g) = U(
∞∑

n=1

hnen) =
∞∑

n=1

hnU(en) =
∞∑

n=1

hnfn,

showing that span∥·∥φ(fn) = L2(G). This completes the proof. □
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