DOI QR코드

DOI QR Code

Effect of Fermented Cucumber Beverage on Ethanol Metabolism and Antioxidant Activity in Ethanol-treated Rats

오이 발효음료가 만성적으로 에탄올을 급여한 흰쥐의 에탄올 대사와 항산화방어계에 미치는 영향

  • Lee, Hae-In (Dept. of Food and Nutrition, Sunchon National University) ;
  • Seo, Kwon-Il (Dept. of Food and Nutrition, Sunchon National University) ;
  • Lee, Jin (Dept. of Food and Nutrition, Sunchon National University) ;
  • Lee, Jeom-Sook (Dept. of Food and Nutrition, Sunchon National University) ;
  • Hong, Sung-Min (Dept. of Food and Nutrition, Sunchon National University) ;
  • Lee, Ju-Hye (Dept. of Food and Nutrition, Sunchon National University) ;
  • Kim, Myung-Joo (Faculty of Hotel Cuisine, Daegu Polytechnic College) ;
  • Lee, Mi-Kyung (Dept. of Food and Nutrition, Sunchon National University)
  • 이해인 (순천대학교 식품영양학과) ;
  • 서권일 (순천대학교 식품영양학과) ;
  • 이진 (순천대학교 식품영양학과) ;
  • 이점숙 (순천대학교 식품영양학과) ;
  • 홍성민 (순천대학교 식품영양학과) ;
  • 이주혜 (순천대학교 식품영양학과) ;
  • 김명주 (대구산업정보대학 호텔조리계열) ;
  • 이미경 (순천대학교 식품영양학과)
  • Received : 2011.05.18
  • Accepted : 2011.07.05
  • Published : 2011.08.31

Abstract

Cucumber fermentation has been used as a means of preservation. This study was performed to investigate the effects of fermented cucumber beverage (CF) containing beneficial materials for an ethanol hangover based on Hovenia dulcis (SKM) on ethanol-induced hepatotoxicity. Male Sprague-Dawley rats were randomly divided into three groups: ethanol control, ethanol plus SKM, and ethanol plus CF+SKM. SKM or CF+SKM was orally administered at a dose of 7 mL/kg body weight once per day for 5 weeks. Control rats were given an equal amount of water. CF+SKM significantly lowered plasma ethanol levels, whereas SKM tended to decrease the levels compared to the control. Both SKM and CF+SKM significantly lowered the plasma acetaldehyde levels and serum transaminase activities compared to those in the control. SKM and CF+SKM did not affect hepatic alcohol dehydrogenase activity; however, it significantly inhibited cytochrome P450 2E1 (CYP2E1) activity. Hepatic aldehyde dehydrogenase (ALDH) activity was significantly higher in the SKM and CF+SKM groups than that in the control group. Plasma acetaldehyde concentration was significantly correlated with hepatic CYP2E1 (r=0.566, p<0.01) activity and ALDH (r=-0.564, p<0.01) activity. Hepatic superoxide dismutase and catalase activities as well as glutathione content increased with the SKM and CF+SKM administration, whereas lipid peroxide content decreased significantly. Furthermore, SKM and CF+SKM lowered plasma and hepatic lipid content and lipid droplets compared to those in the control group. These results indicate that SKM and CF+SKM exhibit hepatoprotective properties partly by inhibiting CYP2E1 activity, enhancing ALDH activity and stimulating the antioxidant defense systems in ethanol-treated rats.

본 연구는 다량으로 폐기되는 오이를 이용하기 위하여 개발한 오이 발효원액을 주원료로 제조한 숙취해소 음료의 간보호 효능을 검증하기 위하여 만성적으로 에탄올을 섭취시킨 흰쥐에서 에탄올 대사, 항산화 방어계, 간독성 관련지표 및 지질함량 변화를 살펴보았다. 실험동물은 4주령의 수컷 SD계 흰쥐 24마리를 1주간 고형식이로 적응시킨 후 난괴법에 의하여 에탄올대조군(Control) 및 에탄올 섭취 흰쥐에게 헛개열매 추출물을 주원료로 하여 개발한 숙취해소 물질인 SKM 급여군(SKM) 또는 SKM을 함유한 오이 발효음료 급여군(CF+SKM)으로 나누었다. SKM과 CF+SKM은 사람의 하루 섭취량을 기준으로 체중 kg당 7 mL씩 매일 일정시각에 경구투여 하였다. SKM과 CF+SKM은 체중과 식이섭취에는 영향을 미치지 않았으며, CF+SKM군의 신장무게가 대조군보다 낮았다. 혈장 중 에탄올 함량은 대조군에 비하여 CF+SKM군에서 유의적으로(p<0.05) 낮았으며, SKM군은 낮은 경향을 보였다. 혈장 중의 아세트알데히드 함량은 대조군에 비하여 SKM과 CF+SKM군 모두 각각 40.6%와 48.4% 유의적인(p<0.05) 개선 효과를 보였다. 간조직 중의 ADH 활성은 실험군간 유의적인 변화가 없었으나 CYP2E1 활성은 SKM과 CF+SKM 모두 대조군에 비하여 유의적으로 (p<0.05) 낮았다. 간조직의 CYP2E1 활성은 혈장 중의 아세트알데히드 함량과 양의 상관관계(r=0.566, p<0.01)였다. 간조직의 ALDH 활성은 SKM과 CF+SKM 모두 대조군에 비하여 유의적으로(p<0.05) 높았으며 혈장의 아세트알데히드 농도와 유의적 음의 상관관계(r=-0.564, p<0.01)를 보였다. SKM군과 CF+SKM군의 간조직내 SOD와 CAT 활성과 GSH 함량이 대조군에 비하여 유의적으로 높았다. 반면, SKM과 CF+SKM은 간조직 중의 지질과산화물 생성을 대조군에 비하여 각각 유의적으로 낮추었다. SKM과 CF+SKM 급여 시 에탄올대조군에 비하여 각각 AST 활성은 29%와 44% 낮았으며, ALT 활성은 42%와 34% 낮았다. 혈장의 총 콜레스테롤과 간조직의 콜레스테롤 함량은 대조군에 비하여 SKM과 CF+SKM군에서 유의적으로(p<0.05) 낮았으며 특히, CF+SKM의 간조직내 중성지질 함량은 대조군에 비하여 유의적으로(p<0.05) 낮았다. SKM군과 CF+SKM군의 간조직 중 지방축적이 대조군에 비하여 감소되었다. 이와 같이 SKM과 CF+SKM은 간조직의 CYP2E1 활성을 억제하고 ALDH 활성과 항산화 방어계를 향상시킴으로써 에탄올로 인한 간독성을 보호할 수 있을 것으로 사료된다.

Keywords

References

  1. Tuma DJ, Casey CA. 2003. Dangerous byproducts of alcohol breakdown-focus on adducts. Alcohol Res Health 27: 285-290.
  2. Cederbaum AI. 2010. Role of CYP2E1 in ethanol-induced oxidant stress, fatty liver and hepatotoxicity. Dig Dis 28: 802-811. https://doi.org/10.1159/000324289
  3. Kim JH, Min SS, Kim SH, Hong HD, Kim JS, Kim SU. 1995. Effect of arrowroot flower (Puerariae flos) extract on lowering of ethanol concentration in rat blood. Agric Chem Biotechnol 38: 549-553.
  4. Kim YC, Pack SH, Lee MG. 1993. Effect of glutamate on the blood concentrations of ethanol in healthy adults. Yakhak Hoeji 37: 549-553.
  5. Joshi SG. 2003. Medicinal plants. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, India. p 157-158.
  6. Kumar D, Kumar S, Singh J, Narender, Rashmi, Vashistha B, Singh N. 2010. Free radical scavenging and analgesic activities of Cucumis sativus L. fruit extract. J Young Pharm 2: 365-368. https://doi.org/10.4103/0975-1483.71627
  7. Park HS, Park WS, Kim MR. 2004. Quality characteristics of commercial Oiji, Korean cucumber pickle. Korean J Food Sci Technol 36: 385-392.
  8. Kays SJ. 1991. Postharvest physiology and handling of perishable plant products. AVI, New York, NY, USA. p 337-339.
  9. Lee SK. 1996. Postharvest physiology of horticultural crops. Sungkunsa, Suwon, Korea. p 11-187.
  10. Kim JE. 2001. Effect of processing methods on quality of cucumber pickles. MS Thesis. Chungju University, Chungbuk, Korea.
  11. Jung ST, Lee HY, Park HJ. 1995. The acidity, pH, salt content and sensory scores change in Oyijangachi manufacturing. J Korean Soc Food Nutr 24: 606-612.
  12. Moon HS. 2011. Development of vinegar using cucumber and its functional activity. MS Thesis. Sunchon National University, Jeonnam, Korea.
  13. Lieber CS, DeCarli LM. 1986. The feeding of ethanol in liquid diets. Alcohol Clin Exp Res 10: 550-553. https://doi.org/10.1111/j.1530-0277.1986.tb05140.x
  14. Muller PH. 1977. A fully enzymatic triglyceride determination. J Clin Chem Clin Biochem 5: 457-464.
  15. Richimond V. 1976. Use of cholesterol oxidase for assay of total and free cholesterol in serum continuous flow analysis. Clin Chem 22: 1579-1588.
  16. Folch J, Mee L, Stanley GSH. 1975. A simple method for the isolation and purification of total lipid from animal tissues. J Biol Chem 226: 497-509.
  17. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  18. Bergmeyer HU. 1974. Method of enzymatic analysis. Academic Press, New York, NY, USA. p 28.
  19. Koivula T, Koivusalo M. 1975. Different from of rat liver aldehyde dehydrogenase and their subcellular distribution. Biochem Biophys Acta 397: 9-23. https://doi.org/10.1016/0005-2744(75)90174-6
  20. Dicker E, McHugh T, Cederbaum AI. 1990. Increased oxidation of p-nitrophenol and aniline by intact hepatocytes isolated from pyrazole-treated rats. Biochim Biophys Acta 1035: 249-256. https://doi.org/10.1016/0304-4165(90)90086-C
  21. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  22. Aebi H. 1984. Catalase in vitro. Methods Enzymol 105: 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  23. Paglia DE, Valentine WN. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70: 158-169
  24. Ellman GL. 1959. Tissue sulfhydryl groups. Arch Biochem Biophys 82: 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
  25. Ohkawa H, Ohishi N, Yagi K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  26. Lieber CS. 1991. Perspectives: do alcohol calories count? Am J Clin Nutr 54: 976-982. https://doi.org/10.1093/ajcn/54.6.976
  27. Lee EH, Chyun JH. 2009. Effects of chongkukjang intake on lipid metabolism and liver function in alcoholic fatty liver rats. J Korean Soc Food Sci Nutr 38: 1506-1515. https://doi.org/10.3746/jkfn.2009.38.11.1506
  28. Eriksson CJ. 2001. The role of acetaldehyde in the action of alcohol. Alcohol Clin Exp Res 25: 15S-32S. https://doi.org/10.1111/j.1530-0277.2001.tb02369.x
  29. Farfan Labonne BE, Gutierrez M, Gomez-Quiroz LE, Konigsberg Fainstein M, Bucio L, Souza V, Flores O, Ortíz V, Hernandez E, Kershenobich D, Gutierrez-Ruiz MC. 2009. Acetaldehyde-induced mitochondrial dysfunction sensitizes hepatocytes to oxidative damage. Cell Biol Toxicol 25: 599-609. https://doi.org/10.1007/s10565-008-9115-5
  30. Comporti M, Signorini C, Leoncini S, Gardi C, Ciccoli L, Giardini A, Vecchio D, Arezzini B. 2010. Ethanol-induced oxidative stress: basic knowledge. Genes Nutr 5: 101-109.
  31. Ramchandani VA, Bosron WF, Li TK. 2001. Research advances in ethanol metabolism. Pathol Biol 49: 676-682. https://doi.org/10.1016/S0369-8114(01)00232-2
  32. Gaudineau C, Beckerman R, Welbourn S, Auclair K. 2004. Inhibition of human P450 enzymes by multiple constituents of the Ginkgo biloba extract. Biochem Biophys Res Commun 318: 1072-1078. https://doi.org/10.1016/j.bbrc.2004.04.139
  33. Dey A, Cederbaum AI, 2006. Alcohol and oxidative liver injury. Hepatology 43: S63-S74. https://doi.org/10.1002/hep.20957
  34. Nordmann R, Ribiere C, Rouach H. 1987. Involvement of iron and iron-catalyzed free radical production in ethanol metabolism and toxicity. Enzyme 37: 57-69. https://doi.org/10.1159/000469241
  35. Caro AA, Cederbaum AI. 2004. Oxidative stress, toxicology, and pharmacology of CYP2E1. Annu Rev Pharmacol Toxicol 44: 27-42. https://doi.org/10.1146/annurev.pharmtox.44.101802.121704
  36. Nadkarni GD, D'Souza NB. 1988. Antioxidant and free radical- scavenging enzymes in chronically ethanol-consuming rats: controversy over hepatic lipid peroxidation. Drug Alcohol Depend 22: 161-164. https://doi.org/10.1016/0376-8716(88)90051-8
  37. Hilton JW, Hodson PV, Slinger SJ. 1980. The requirement and toxicity of selenium in rainbow trout (Salmo Gairdneri). J Nutr 110: 2527-2535. https://doi.org/10.1093/jn/110.12.2527
  38. Lee ES, Moon JO. 2001. Effect of glutathione on aldehyde dehydrogenase activity. Kor J Environ Toxicol 16: 9-16.
  39. Meister A. 1991. Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol Ther 51: 155-194. https://doi.org/10.1016/0163-7258(91)90076-X
  40. Oyanagui Y. 1989. SOD and active oxygen modulator. Nihin Igakukan, Tokyo, Japan. p 17-36.
  41. Jung DM. 2001. Effect of long term exercise on liver function of fatty liver patients: by data analysis of GPT, GOT, ${\gamma}$-GTP. MS Thesis. Kyunghee University. Seoul, Korea.
  42. Ki SH, Choi JH, Kim CW, Kim SG. 2007. Combined metadoxine and garlic oil treatment efficaciously abrogates alcoholic steatosis and CYP2E1 induction in rat liver with restoration of AMPK activity. Chem Biol Interact 169: 80-90. https://doi.org/10.1016/j.cbi.2007.05.008
  43. Eaton S, Record CO, Bartlett K. 1997. Multiple biochemical effects in the pathogenesis of alcoholic fatty liver. Eur J Clin Invest 27: 719-722. https://doi.org/10.1046/j.1365-2362.1997.1780727.x

Cited by

  1. Effects of Scopoletin Supplementation on Insulin Resistance and Antioxidant Defense System in Chronic Alcohol-Fed Rats vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.173
  2. Effects of Gastrodiae rhizoma on the Liver Function and Alcohol Metabolism in Alcohol Treated Rats vol.32, pp.6, 2016, https://doi.org/10.9724/kfcs.2016.32.6.818
  3. 아이스플랜트(Mesembryanthemum crystallinum L.) 발효추출물의 항산화, 항당뇨 및 간 보호효과 vol.27, pp.8, 2017, https://doi.org/10.5352/jls.2017.27.8.909