References
- Caterina M. J., Schumacher M. A., Tominaga M., Rosen T. A., Levine J. D., Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway, Nature, 389, pp. 816-824, 1997. https://doi.org/10.1038/39807
- Hwang S. W., Cho H., Kwak J., Lee S. Y., Kang C. J., Jung J., Cho S., Min K. H., Suh Y. G., Kim D., Oh U. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances, Proc. Natl. Acad. Sci. USA, 97, pp. 6155-6160, 2000. https://doi.org/10.1073/pnas.97.11.6155
- Oh U., Hwang S. W., Kim D. Capsaicin activates a nonselective cation channel in cultured neonatal rat dorsal root ganglion neurons. J. Neurosci,. 16, pp. 1659-1667, 1996. https://doi.org/10.1523/JNEUROSCI.16-05-01659.1996
- Caterina M. J., Schumacher M. A., Tominaga M., Rosen T. A., Levine J. D., Julius D. "The capsaicin receptor: a heat- activated ion channel in the pain pathway." Nature, 389, pp. 816-824, 1997. https://doi.org/10.1038/39807
- Montell C., Birnbaumer L., Flockerzi V., Bindels R. J., Bruford E. A., Caterina M. J., Clapham D. E., Harteneck C., Heller S., Julius D., Kojima I., Mori Y., Penner R., Prawitt D., Scharenberg A. M., Schultz G., Shimizu N., Zhu M. X. A unified nomenclature for the superfamily of TRP cation channels. Mol. Cell, 9, pp. 229-231, 2002. https://doi.org/10.1016/S1097-2765(02)00448-3
- Caterina M. J., Leffler A., Malmberg A.. B., Martin W. J., Trafton J., Petersen-Zeitz K. R., Koltzenburg M., Basbaum A. I., Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science, 288, pp. 5464-5478, 2000.
- Davis J. B., Gray J., Gunthorpe M. J., Hatcher J. P., Davey P. T., Overend P., Harries M. H., Latcham J., Clapham C., Atkinson K., Hughes S. A., Rance K., Grau E., Harper A. J., Pugh P. L., Rogers D. C., Bingham S., Randall A., Sheardown S. A.. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature, 405, pp. 6783-6794, 2000.
- Palazzo E., Luongo L., de Novellis V., Berrino L., Rossi F., Maione S. Moving towards supraspinal TRPV1 receptors for chronic pain relief. Mol Pain. 6, 66, 2010. https://doi.org/10.1186/1744-8069-6-66
- Vlachova V., Teisinger J., Susankova K., Lyfenko A., Ettrich R., Vyklicky L. Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1. J. Neurosci. 23, pp. 1340-1350, 2003.
- Rathee P. K., Distler C., Obreja O., Neuhuber W., Wang G. K., Wang S. Y., Nau C., Kress M. PKA/AKAP/VR-1 module: A common link of Gs-mediated signaling to thermal hyperalgesia. J. Neurosci. 22, pp. 4740-4745, 2002.
- De Petrocellis .L, Harrison S., Bisogno T., Tognetto M., Brandi I., Smith G. D., Creminon C., Davis J. B., Geppetti P., Di Marzo V. The vanilloid receptor (VR1) mediated effects of anandamide are potently enhanced by the cAMP-dependent protein kinase. J. Neurochem. 77, pp. 1660-1663, 2001. https://doi.org/10.1046/j.1471-4159.2001.00406.x
- Bhave, G., Hu, H.-J., Kathi S., Glauner, Zhu, W., Wang, H., D. J. Brasier, Gerry S. Oxford ,and Robert W., Gereau IV. protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc. Natl. Acad. Sci., 100, pp. 12480-12485, 2003. https://doi.org/10.1073/pnas.2032100100
- Premkumar L. S., Qi Z. H., Van Buren J., Raisinghani M. Enhancement of potency and efficacy of NADA by PKC-mediated phosphorylation of vanilloid receptor. J. Neurophysiol. 91, pp. 1442-1449, 2004. https://doi.org/10.1152/jn.00745.2003
- Tominaga M., Wada M., Masu M. Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc. Natl. Acad. Sci. USA. 98, pp. 6951-6956, 2001. https://doi.org/10.1073/pnas.111025298
- Varga A., Bolcskei K., Szoke E., Almasi R., Czeh G., Szolcsanyi J., Petho G. Relative roles of protein kinase A and protein kinase C in modulation of transient receptor potential vanilloid type 1 receptor responsiveness in rat sensory neurons in vitro and peripheral nociceptors in vivo. Neuroscience. 140, pp. 645-657, 2006. https://doi.org/10.1016/j.neuroscience.2006.02.035
- Jung J., Shin J. S., Lee S. Y., Hwang S. W., Koo J., Cho H., Oh U. Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding. J. Biol Chem.. 279, pp. 7048-7054, 2004. https://doi.org/10.1074/jbc.M311448200
- Jin X., Morsy N., Winston J., Pasricha P. J., Garrett K., Akbarali H. I. Modulation of TRPV1 by nonreceptor tyrosine kinase, c-Src kinase. Am. J. Physiol. Cell Physiol. 287, pp. C558-C563, 2004. https://doi.org/10.1152/ajpcell.00113.2004
- Lee S. Y., Hong Y., Oh U. Decreased pain sensitivity of capsaicin-treated rats results from decreased VR1 expression. Arch Pharm Res., 27, pp. 1154-1160, 2004. https://doi.org/10.1007/BF02975122
- Ji R. R., Samad T. A., Jin S. X., Schmoll R., Woolf C. J.. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron, 36, pp. 57-68, 2002. https://doi.org/10.1016/S0896-6273(02)00908-X
- Morenilla-Palao C., Planells-Cases R., Garcia-Sanz N., Ferrer- Montiel A. Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J. Biol. Chem., 279, pp. 25665-25672, 2004. https://doi.org/10.1074/jbc.M311515200
- Lee S.Y. Identification of a protein that interacts with the vanilloid receptor, Biochem. Biophys. Res. Commun., 331, pp. 1445-1451, 2005. https://doi.org/10.1016/j.bbrc.2005.04.066
- Stan F. J., van de Graaf, Qing Chang, Arjen R. Mensenkamp, Joost G. J., Hoenderop, and Rene J. M., Bindels. Direct interaction with Rab11a targets the epithelial Ca2+ channel TRPV5 and TRPV6 to the plasma membrane. Mol. Cell. Biol., 26, pp. 303-312, 2006. https://doi.org/10.1128/MCB.26.1.303-312.2006
- Cayouette S., Bousquet S. M., Francoeur N., Dupre E., Monet M., Gagnon H., Guedri Y. B., Lavoie C., Boulay G. Involvement of Rab9 and Rab11 in the intracellular trafficking of TRPC6. Biochim. Biophys. Acta. 1803, pp. 805-812, Epub 2010. https://doi.org/10.1016/j.bbamcr.2010.03.010
- Karpushev A. V., Levchenko V., Pavlov T. S., Lam V. Y., Vinnakota K. C., Vandewalle A., Wakatsuki .T, Staruschenko A. Regulation of ENaC expression at the cell surface by Rab11. Biochem. Biophys. Res. Commun. 377, pp. 521-525, Epub 2008. https://doi.org/10.1016/j.bbrc.2008.10.014
- Zadeh A. D., Xu H., Loewen M. E., Noble G. P., Steele D. F., Fedida D. Internalized Kv1.5 traffics via Rab-dependent pathways. J. Physiol. 586, pp. 4793-4813. Epub 2008 Erratum in: J. Physiol. 587, p. 505, 2009. https://doi.org/10.1113/jphysiol.2008.161570
- Bilan F., Nacfer M., Fresquet F., Norez C., Melin P., Martin-Berge A., Costa de Beauregard M. A., Becq F., Kitzis A., Thoreau V. Endosomal SNARE proteins regulate CFTR activity and trafficking in epithelial cells. Exp. Cell Res. 314, pp. 2199-2211, Epub 2008. https://doi.org/10.1016/j.yexcr.2008.04.012
- Wilson G. M., Fielding A. B., Simon G.. C., Yu X., Andrews P. D., Hames R. S., et al. The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis, Mol. Biol. Cell,, 16, pp. 849-860, 2005.
- Fielding A. B., Schontech E., Matheson J., Wilson G., Yu X., Hickson G. R., et al. Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J., 24, pp. 3389-3399, 2005, https://doi.org/10.1038/sj.emboj.7600803
- Sudharshan Eathirak, Ashwini Mishra, Prekeris, David G. Lambright. Structural Basis for Rab11-mediated Recruitment of FIP3 to Recycling Endosomes. J. Mol. Biol., 364, pp. 121-135, 2006. https://doi.org/10.1016/j.jmb.2006.08.064
- Einarson M. E. Detection of protein-protein interactions using the GST fusion protein pull-down technique, Molecular Cloning : A Laboratory Manual (eds. Sambrook, J. & Russell, D. W.), pp. 10.55-18.59, 2001.
- Horgan C. P., McCaffrey M. W. The dynamic Rab11-FIPs. Biochem. Soc. Trans., 37, pp. 1032-1036, 2009. https://doi.org/10.1042/BST0371032