DOI QR코드

DOI QR Code

Role of Rab11 on Membrane Trafficking of Rat Vanilloid Receptor, TRPV1

바닐로이드 수용체 TRPV1의 막수송과정에서의 Rab11의 역할

  • Um, Ki-Bum (Medical School, Sungkyunkwan University) ;
  • Lee, Soon-Youl (Dept. of Biotechnology, Genetic Engineering Research Institute, Hankyong National University)
  • 엄기범 (성균관대학교 의과대학) ;
  • 이순열 (한경대학교 생명공학과, 유전공학연구소)
  • Received : 2011.04.21
  • Accepted : 2011.07.07
  • Published : 2011.07.31

Abstract

Vanilloid receptor, TRPV1 (transient receptor potential vanilloid 1) is a non-selective cation channel that responds to a variety of pain-eliciting material including capsaicin, pH, heat. Although, membrane trafficking of TRPV1 was not much known so far, TRPV1 was reported to interact with FIP3 (family of Rab11 interacting protein 3). FIP3 was identified as one of Rab11 interacting proteins that is recently reported important in membrane trafficking of several channel proteins directly or indirectly. Therefore, in this study, we examined the role of Rab11 in the membrane trafficking of TRPV1 using cell biological and biochemical techniques. Rab11 was found really colocalized with TRPV1 based on the result of confocal microscopy. However, GST-pulldown assay, one of biochemical technique, found that Rab11 did not interact with TRPV1. Although Rab11 does not interact with TRPV1 directly, we hypothesized that Rab11 is indeed involved in the membrane trafficking of TRPV1. In order to examine further the role of Rab11 in the membrane trafficking of TRPV1, the expression of TRPV1 on the membrane was examined when the expression of Rab11 was decreased down to about 50% by siRNA technique and found decreased significantly. From this result, we can conclude that Rab11 is involved in the membrane trafficking of TRPV1 in a way of including FIP3.

바닐로이드 수용체 TRPV1(transient receptor potential vanilloid 1)은 캡사이신, pH, 열 등의 통증 유발물질에 의해 활성화되는 비특이적 양이온 채널로서 통증발현에 핵심적인 막 단백질이다. TRPV1의 막 수송에 관한 연구가 미미한 가운데 FIP3(family of Rab11 interacting protein 3)가 TRPV1 채널과 결합하여 막수송에 관여한다고 보고되었다. FIP3는 Rab11과 결합하는 단백질인데 최근 Rab11 단백질이 여러 채널 단백질의 막수송에 직접적으로 또는 간접적으로 중요하다고 보고되었다. 그러므로 본 연구에서는 Rab11이 TRPV1의 막 수송에서의 역할을 알아보기 위하여 세포 생물학적, 생화학적으로 알아보았다. 공촛점 현미경을 통하여 확인한 결과 Rab11은 실제로 세포내에서 TRPV1과 동일한 위치에서 발현되어 있음을 확인하였다. 하지만 생화학적인 방법인 GST-pulldown을 실시하였을 때 TRPV1과 Rab11간에는 서로 직접적인 결합은 하지 않는 것으로 나타났다. 비록 직접적인 결합은 하지 않지만 Rab11이 TRPV1의 막 수송에 관여한다고 가정하고 Rab11의 TRPV1의 막수송에서의 역할을 더 자세히 알아보기 위하여 세포내 Rab11a의 발현을 siRNA를 사용하여 Rab11a의 발현을 50%수준으로 저해한 후 TRPV1의 세포막으로의 이동을 알아본 결과 Rab11 발현 저해 시 세포막에 이동된 TRPV1이 현저히 감소함을 확인할 수 있었다. 이 결과로부터 Rab11이 아마도 FIP3을 포함하는 방법으로 TRPV1의 막 수송에 영향을 주는 것으로 결론지을 수 있다.

Keywords

References

  1. Caterina M. J., Schumacher M. A., Tominaga M., Rosen T. A., Levine J. D., Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway, Nature, 389, pp. 816-824, 1997. https://doi.org/10.1038/39807
  2. Hwang S. W., Cho H., Kwak J., Lee S. Y., Kang C. J., Jung J., Cho S., Min K. H., Suh Y. G., Kim D., Oh U. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances, Proc. Natl. Acad. Sci. USA, 97, pp. 6155-6160, 2000. https://doi.org/10.1073/pnas.97.11.6155
  3. Oh U., Hwang S. W., Kim D. Capsaicin activates a nonselective cation channel in cultured neonatal rat dorsal root ganglion neurons. J. Neurosci,. 16, pp. 1659-1667, 1996. https://doi.org/10.1523/JNEUROSCI.16-05-01659.1996
  4. Caterina M. J., Schumacher M. A., Tominaga M., Rosen T. A., Levine J. D., Julius D. "The capsaicin receptor: a heat- activated ion channel in the pain pathway." Nature, 389, pp. 816-824, 1997. https://doi.org/10.1038/39807
  5. Montell C., Birnbaumer L., Flockerzi V., Bindels R. J., Bruford E. A., Caterina M. J., Clapham D. E., Harteneck C., Heller S., Julius D., Kojima I., Mori Y., Penner R., Prawitt D., Scharenberg A. M., Schultz G., Shimizu N., Zhu M. X. A unified nomenclature for the superfamily of TRP cation channels. Mol. Cell, 9, pp. 229-231, 2002. https://doi.org/10.1016/S1097-2765(02)00448-3
  6. Caterina M. J., Leffler A., Malmberg A.. B., Martin W. J., Trafton J., Petersen-Zeitz K. R., Koltzenburg M., Basbaum A. I., Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science, 288, pp. 5464-5478, 2000.
  7. Davis J. B., Gray J., Gunthorpe M. J., Hatcher J. P., Davey P. T., Overend P., Harries M. H., Latcham J., Clapham C., Atkinson K., Hughes S. A., Rance K., Grau E., Harper A. J., Pugh P. L., Rogers D. C., Bingham S., Randall A., Sheardown S. A.. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature, 405, pp. 6783-6794, 2000.
  8. Palazzo E., Luongo L., de Novellis V., Berrino L., Rossi F., Maione S. Moving towards supraspinal TRPV1 receptors for chronic pain relief. Mol Pain. 6, 66, 2010. https://doi.org/10.1186/1744-8069-6-66
  9. Vlachova V., Teisinger J., Susankova K., Lyfenko A., Ettrich R., Vyklicky L. Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1. J. Neurosci. 23, pp. 1340-1350, 2003.
  10. Rathee P. K., Distler C., Obreja O., Neuhuber W., Wang G. K., Wang S. Y., Nau C., Kress M. PKA/AKAP/VR-1 module: A common link of Gs-mediated signaling to thermal hyperalgesia. J. Neurosci. 22, pp. 4740-4745, 2002.
  11. De Petrocellis .L, Harrison S., Bisogno T., Tognetto M., Brandi I., Smith G. D., Creminon C., Davis J. B., Geppetti P., Di Marzo V. The vanilloid receptor (VR1) mediated effects of anandamide are potently enhanced by the cAMP-dependent protein kinase. J. Neurochem. 77, pp. 1660-1663, 2001. https://doi.org/10.1046/j.1471-4159.2001.00406.x
  12. Bhave, G., Hu, H.-J., Kathi S., Glauner, Zhu, W., Wang, H., D. J. Brasier, Gerry S. Oxford ,and Robert W., Gereau IV. protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc. Natl. Acad. Sci., 100, pp. 12480-12485, 2003. https://doi.org/10.1073/pnas.2032100100
  13. Premkumar L. S., Qi Z. H., Van Buren J., Raisinghani M. Enhancement of potency and efficacy of NADA by PKC-mediated phosphorylation of vanilloid receptor. J. Neurophysiol. 91, pp. 1442-1449, 2004. https://doi.org/10.1152/jn.00745.2003
  14. Tominaga M., Wada M., Masu M. Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc. Natl. Acad. Sci. USA. 98, pp. 6951-6956, 2001. https://doi.org/10.1073/pnas.111025298
  15. Varga A., Bolcskei K., Szoke E., Almasi R., Czeh G., Szolcsanyi J., Petho G. Relative roles of protein kinase A and protein kinase C in modulation of transient receptor potential vanilloid type 1 receptor responsiveness in rat sensory neurons in vitro and peripheral nociceptors in vivo. Neuroscience. 140, pp. 645-657, 2006. https://doi.org/10.1016/j.neuroscience.2006.02.035
  16. Jung J., Shin J. S., Lee S. Y., Hwang S. W., Koo J., Cho H., Oh U. Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding. J. Biol Chem.. 279, pp. 7048-7054, 2004. https://doi.org/10.1074/jbc.M311448200
  17. Jin X., Morsy N., Winston J., Pasricha P. J., Garrett K., Akbarali H. I. Modulation of TRPV1 by nonreceptor tyrosine kinase, c-Src kinase. Am. J. Physiol. Cell Physiol. 287, pp. C558-C563, 2004. https://doi.org/10.1152/ajpcell.00113.2004
  18. Lee S. Y., Hong Y., Oh U. Decreased pain sensitivity of capsaicin-treated rats results from decreased VR1 expression. Arch Pharm Res., 27, pp. 1154-1160, 2004. https://doi.org/10.1007/BF02975122
  19. Ji R. R., Samad T. A., Jin S. X., Schmoll R., Woolf C. J.. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron, 36, pp. 57-68, 2002. https://doi.org/10.1016/S0896-6273(02)00908-X
  20. Morenilla-Palao C., Planells-Cases R., Garcia-Sanz N., Ferrer- Montiel A. Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J. Biol. Chem., 279, pp. 25665-25672, 2004. https://doi.org/10.1074/jbc.M311515200
  21. Lee S.Y. Identification of a protein that interacts with the vanilloid receptor, Biochem. Biophys. Res. Commun., 331, pp. 1445-1451, 2005. https://doi.org/10.1016/j.bbrc.2005.04.066
  22. Stan F. J., van de Graaf, Qing Chang, Arjen R. Mensenkamp, Joost G. J., Hoenderop, and Rene J. M., Bindels. Direct interaction with Rab11a targets the epithelial Ca2+ channel TRPV5 and TRPV6 to the plasma membrane. Mol. Cell. Biol., 26, pp. 303-312, 2006. https://doi.org/10.1128/MCB.26.1.303-312.2006
  23. Cayouette S., Bousquet S. M., Francoeur N., Dupre E., Monet M., Gagnon H., Guedri Y. B., Lavoie C., Boulay G. Involvement of Rab9 and Rab11 in the intracellular trafficking of TRPC6. Biochim. Biophys. Acta. 1803, pp. 805-812, Epub 2010. https://doi.org/10.1016/j.bbamcr.2010.03.010
  24. Karpushev A. V., Levchenko V., Pavlov T. S., Lam V. Y., Vinnakota K. C., Vandewalle A., Wakatsuki .T, Staruschenko A. Regulation of ENaC expression at the cell surface by Rab11. Biochem. Biophys. Res. Commun. 377, pp. 521-525, Epub 2008. https://doi.org/10.1016/j.bbrc.2008.10.014
  25. Zadeh A. D., Xu H., Loewen M. E., Noble G. P., Steele D. F., Fedida D. Internalized Kv1.5 traffics via Rab-dependent pathways. J. Physiol. 586, pp. 4793-4813. Epub 2008 Erratum in: J. Physiol. 587, p. 505, 2009. https://doi.org/10.1113/jphysiol.2008.161570
  26. Bilan F., Nacfer M., Fresquet F., Norez C., Melin P., Martin-Berge A., Costa de Beauregard M. A., Becq F., Kitzis A., Thoreau V. Endosomal SNARE proteins regulate CFTR activity and trafficking in epithelial cells. Exp. Cell Res. 314, pp. 2199-2211, Epub 2008. https://doi.org/10.1016/j.yexcr.2008.04.012
  27. Wilson G. M., Fielding A. B., Simon G.. C., Yu X., Andrews P. D., Hames R. S., et al. The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis, Mol. Biol. Cell,, 16, pp. 849-860, 2005.
  28. Fielding A. B., Schontech E., Matheson J., Wilson G., Yu X., Hickson G. R., et al. Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J., 24, pp. 3389-3399, 2005, https://doi.org/10.1038/sj.emboj.7600803
  29. Sudharshan Eathirak, Ashwini Mishra, Prekeris, David G. Lambright. Structural Basis for Rab11-mediated Recruitment of FIP3 to Recycling Endosomes. J. Mol. Biol., 364, pp. 121-135, 2006. https://doi.org/10.1016/j.jmb.2006.08.064
  30. Einarson M. E. Detection of protein-protein interactions using the GST fusion protein pull-down technique, Molecular Cloning : A Laboratory Manual (eds. Sambrook, J. & Russell, D. W.), pp. 10.55-18.59, 2001.
  31. Horgan C. P., McCaffrey M. W. The dynamic Rab11-FIPs. Biochem. Soc. Trans., 37, pp. 1032-1036, 2009. https://doi.org/10.1042/BST0371032