A Multicast-Based Handover Scheme for the IEEE WAVE Networks

IEEE WAVE 네트워크를 위한 멀티캐스트 기반 핸드오버 기법

  • Received : 2011.02.17
  • Accepted : 2011.03.19
  • Published : 2011.04.30

Abstract

The IEEE WAVE standard specification does not support handover operation since it is designed to transmit mainly the ITS-related messages that are limited in length. More advanced multimedia applications such as Internet browsing and streaming of video clips produced by CCTVs, however, require handover support such that a sequence of data packets can be received seamlessly while an OBU's association with the RSUs changes. This paper presents a new handover scheme that can operate without performance degradation in the cases where there are multiple RSUs in the areas of handover by making use of the IEEE 802.11f IAPP Move-notify messages, based on the fast handover scheme with proactive caching by disassociation messages introduced previously. Experimental results from the simulation shows that the proposed handover scheme outperforms the scheme based solely on multicast.

IEEE WAVE 표준 규격은 크기가 제한적인 ITS 관련 메시지의 전송을 주 목적으로 설계되었기 때문에 핸드오버를 지원하지 않는다. 그러나 IEEE WAVE 네트워크에서 인터넷 브라우징 또는 CCTV 비디오클립 스트리밍과 같은 멀티미디어 서비스를 제공하기 위해서는 OBU가 연결된 RSU가 바뀌는 동안에도 끊김없는 데이터 패킷의 수신이 가능한 핸드오버 기능이 필요하다. 본 논문에서는 결합해제 메시지 기반의 능동적 사전캐싱 방식의 고속 핸드오버 기법을 확장시켜 RSU들 간에 IEEE 802.11f IAPP Move-notify 메시지를 전송하도록 함으로써 핸드오버 후보 RSU가 다수인 상황에서도 성능의 저하 없이 동작할 수 있는 멀티캐스트 기반 핸드오버 기법을 제안한다. 제안된 핸드오버 기법이 단순 멀티캐스트 기반의 핸드오버 기법에 비하여 우수한 성능을 보임을 시뮬레이션 결과를 통하여 확인한다.

Keywords

References

  1. IEEE P802.11pTM/D10.0 Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 7: Wireless Access in Vehicular Environments, 2010.
  2. IEEE 802.11f, "Recommended practice for multi-vendor access point interoperability via an inter-access point protocol across distribution systems supporting IEEE 802.11 operation," IEEE Standard, July 2003.
  3. IEEE 802.11r, "Wireless medium access control (MAC) and physical layer (PHY) specifications: fast basic service set (BSS) transition," IEEE 802.11r-2008
  4. J. Montavont, N. Montavont and T. Noel, "Enhanced schemes for L2 handover in IEEE 802.11 networks and their evaluations," Proc. 16th IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC '05), Berlin, Germany, vol.3, pp.429-1433, Sept. 2005.
  5. C. C. Tseng, K. H. Chi, M. D. Hsieh and H. H. Chang, "Location-based fast handoff for 802.11 networks," IEEE Communications Letters, vol.9, pp.304-306. April 2005. https://doi.org/10.1109/LCOMM.2005.04010
  6. A. Shimizu, S. Fukuzawa, T. Osafune, M. Hayashi and S. Matsui, "Enhanced functions of 802.11 protocol for adaptation to communications between high speed vehicles and infrastructure," Proc. 7th IEEE Int. Conf. on ITS Telecommunications (ITST '07), Seattle, WA, USA, pp.1-3, Oct. 2007.
  7. E. Paik and Y. Choi, "Prediction-based fast handoff for mobile WLANs," Proc. 10th IEEE Int. Conf. on Telecommunications (ICT '03), Tahiti. vol.1, pp.748-753, Feb. 2003.
  8. M. Shin, A. Mishra and W. Arbaugh, "Improving the latency of 802.11 hand-offs using neighbor graphs," Proc. ACM MobiSys 2004, June 2004.
  9. A. Mishra, M. Shin and W. Arbaugh, "Context caching using neighbor graphs for fast handoffs in a wireless network," Proc. IEEE INFOCOM 2004, Mar. 2004.
  10. S. Pack and Y. Choi, "Fast handoff scheme based on mobility prediction in public wireless LAN systems," IEEE Proc. Commun., Oct. 2004.
  11. S. Pack, H. Jung, T. Kwon and Y. Choi, "SNC: a selective neighbor caching scheme for fast handoff in IEEE 802.11 wireless networks," ACM Mobile Computing and Commun. Review 2005, Oct. 2005.
  12. J. Montavont and T. Noel, "IEEE 802.11 handover assisted by GPS information," Proc. IEEE Int. Conf. on Wireless and Mobile Computing, Networking and Communications (WiMob '06), Montreal, Quebec, Canada, pp.166-172, June 2006.
  13. H. S. Kim, S. H. Park, C. S. Park, J. W. Kim and S. J. Ko, "Selective channel scanning for fast handoff in wireless LAN using neighbor graph," The 2004 International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC2004), July 2004.
  14. N. Choi, S. Choi, Y. Seok, T. Kwon and Y. Choi, "A solicitation-based IEEE 802.11p MAC protocol for roadside to vehicle networks," 2007 Mobile Networking for Vehicular Environments, pp.91-96, May 2007,
  15. A. Bohm and M. Jonsson, "Handover in IEEE 802.11p-based delay-sensitive vehicle-to-infrastructure communication," Research Report IDE-0924, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad University, Sweden, 2009.
  16. J. W. Choi and H. J. Lee, Supporting Handover in an IEEE 802.11p-Based Wireless Access System, VANET 2010, September. 2010
  17. M. H. Sun and D. M. Blough, "Mobility prediction using future knowledge," School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA USA