DOI QR코드

DOI QR Code

Prediction of Genes Lacking in an Ammonia Oxidizing Archaeon for Independent Growth

암모니아 산화 고세균의 독립성장에 필요한 결손 유전자 예측

  • Han, Sang-Soo (Department of Biological Sciences, College of Natural Sciences, Chonnam National University) ;
  • Lee, Jin-Young (Department of Biological Sciences, College of Natural Sciences, Chonnam National University) ;
  • Rhee, Sung-Keun (Department of Microbiology, Chungbuk National University) ;
  • Kim, Geun-Joong (Department of Biological Sciences, College of Natural Sciences, Chonnam National University)
  • Received : 2011.05.04
  • Accepted : 2011.05.30
  • Published : 2011.06.30

Abstract

As a number of archaea are ubiquitously found in non-extreme habitats, elucidation of their functional roles becomes currently an emerging issue. However, most of them are unable to grow in pure culture and so it remains to be established. In order to find genes lacking in the genome of an ammonia-oxidizing archaeon (AOA), we here report on the comparative analyses of an AOA genome with those of experimentally or theoretically established minimal genomes for independent growth. We assessed the genes lacking in AOA using logic of clusters of orthologous groups (COG), remote homology, consensus sequence weight matrix, function-based motif or domain, and then further excluded genes encoding hypothetical orarchaea-specific proteins. The results of these combination analyses revealed 19 candidate genes lacking in the genome of an AOA. Thus, our results provide a possibility of inducing independent growth of AOA when supplemented with product (s) of the lacking gene (s), and also give a chance for finding new proteins with novel sequence or structure space even if the predicted lacking-genes will be found using another algorithms or biochemical studies.

Keywords

References

  1. Allen, E. E. and J. F. Banfield (2005) Community genomics in microbial ecology and evolution. Nat. Rev. Microbiol. 3: 489-498. https://doi.org/10.1038/nrmicro1157
  2. Allers, T. and M. Mevarech (2005) Archaeal genetics -The third way. Nat. Rev. Genet. 6: 58-73. https://doi.org/10.1038/nrg1504
  3. Berg, I. A., D. Kockelkorn, W. Buckel, and G. Fuchs (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea. Science 318: 1782-1786. https://doi.org/10.1126/science.1149976
  4. Bleichert, F., K. T. Gagnon, B. A. Brown, E. S. Maxwell, A. E. Leschziner, V. M. Unger, and S. J. Baserga (2009) A dimeric structure for archaeal box C/D small ribonucleoproteins. Science 325: 1384-1387. https://doi.org/10.1126/science.1176099
  5. Dong, X. C., M. Y. Zhou, C. Zhong, B. Yang, N. Shen, and J. P. Ding (2010) Crystal structure of Pyrococcus horikoshii tryptophany1-tRNA synthetase and strueture-based phylogenetic analysis suggest an archaeal origin of tryptophany1-tRNA synthetase. Nucleic Acids Res. 38: 1401-1412. https://doi.org/10.1093/nar/gkp1053
  6. Dore, J. E., R. Lukas, D. W. Sadler, M. J. Church, and D. M. Karl (2009) Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc. Natl. Acad. Sci. 106: 12235-12240. https://doi.org/10.1073/pnas.0906044106
  7. Ferber, D. (2004) Synthetic biology: Microbes made to order. Science 303: 158-161. https://doi.org/10.1126/science.303.5655.158
  8. Gaasterland, T. (1999) Archaeal genomics. Curr. Opin. Microbiol. 2: 542-547. https://doi.org/10.1016/S1369-5274(99)00014-4
  9. Gibson, D. G., J. I. Glass, C. Lartigue, V. N. Noskov, R. Y. Chuang, M. A. Algire, G. A. Benders, M. G. Montague, L. Ma, M. M. Moodie, C. Merryman, S. Vashee, R. Krishnakumar, N. AssadGarcia, C. Andrews-Pfannkoch, E. A. Denisova, L. Young, Z. Q. Qi, T. H. Segall-Shapiro, C. H. Calvey, P. P. Parmar, C. A. Hutehison, H. O. Smith, and J. C. Venter (2010) Creation of a bacterial cell controlled by a ehemically synthesized genome. Science 329: 52-56. https://doi.org/10.1126/science.1190719
  10. Gil, R, F. J. Silva, J. Pereto, and A. Moya (2004) Determination of the core of a minimal bacterial gene set. Microbiol. Mol. Biol. Rev. 68: 518-537. https://doi.org/10.1128/MMBR.68.3.518-537.2004
  11. Glass, J. I., N. Assad-Gareia, N. Alperovieh, S. Yooseph, M. R. Lewis, M. Maruf, C. A. Hutchison, H. O. Smith, and J. C. Venter (2006) Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci. 103: 425-430. https://doi.org/10.1073/pnas.0510013103
  12. Han, S. S., J. Y. Lee, W. H. Kim, H. J. Shin, and G. J. Kim (2008) Screening of promoters from metagenomic DNA and their use for the construetion of expression vectors. J. Microbiol. Biotechnol. 18: 1634-1640.
  13. Herndl, G. J., T. Reinthaler, E. Teira, H. van Aken, C. Veth, A. Pemthaler, and J. Pemthaler (2005) Contribution of Archaea to total prokaryotie production in the deep Atlantic Ocean. Appl. Environ. Microbiol. 71: 2303-2309. https://doi.org/10.1128/AEM.71.5.2303-2309.2005
  14. Humbard,M. A., H. V. Miranda,J. M. Lim, D. J. Krause, J. R. Pritz, G. Y. Zhou, S. X. Chen, L. Wells, and J. A. Maupin-Furlow (2010) Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature 463: 54-60. https://doi.org/10.1038/nature08659
  15. Khomyakova, M., O. Bukmez, L. K. Thomas, T. J. Erb, and I. A. Berg (2011) A methylaspartate cycle in haloarchaea. Science 331: 334-337. https://doi.org/10.1126/science.1196544
  16. Konneke, M., A. E. Bernhard, J. R. de la Torre, C. B. Walker, J. B. Waterbury, and D. A. Stahl (2005) Isolation of an autotrophic ammonia-oxidizing marine arehaeon. Nature 437: 543-546. https://doi.org/10.1038/nature03911
  17. McDaniel, L. D., E. Young, J. Delaney, F. Ruhnau, K. B. Ritchie, and J. H. Paul (2010) High frequency of horizontal gene transfer in the oceans. Science 330: 50. https://doi.org/10.1126/science.1192243
  18. Mincer, T. J., M. J. Church, L. T. Taylor, C. Preston, D. M. Kar, and E. F. DeLong (2007) Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ. Microbiol. 9: 1162-1175. https://doi.org/10.1111/j.1462-2920.2007.01239.x
  19. Moissl-Eichinger, C. (2011) Archaea in artificial environments: their presence in global spacecraft clean rooms and impact on planetary protection. ISME J. 5: 209-219. https://doi.org/10.1038/ismej.2010.124
  20. Mushegian, A. R. and E. V. Koonin (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl. Acad. Sci. 93: 10268-10273. https://doi.org/10.1073/pnas.93.19.10268
  21. Nather, D. J. and R Rachel (2004) The outer membrane of the hyperthermophilic archaeon ignicoccus: dynamics, ultrastructure and composition. Biochem. Soc. Trans. 32: 199-203. https://doi.org/10.1042/BST0320199
  22. Orengo, C. A. and J. M. Thornton (2005) Protein families and their evolution - A structural perspective. Ann. Rev. Biochem. 74: 867-900. https://doi.org/10.1146/annurev.biochem.74.082803.133029
  23. Park, B. J., S. J. Park, D. N. Yoon, S. Schouten, J. S. S. Damste, and S. K. Rhee (2010) Cultivation of autotrophic ammoniaoxidizing arehaea from marine sediments in coculture with sulfur-oxidizing bacteria. Appl. Environ. Microbiol. 76: 7575-7587. https://doi.org/10.1128/AEM.01478-10
  24. Schleper, C., I. Holz, D. Janekovic, J. Murphy, and W. Zillig (1995) A muIticopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating. J. Bacteriol. 177: 4417-4426.
  25. Spang, A., R. Hatzenpichler, C. Brochier-Armanet, T. Rattei, P. Tischler, E. Spieck, W. Streit, D. A. Stahl, M. Wagner, and C. Schleper (2010) Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol. 18: 331-340. https://doi.org/10.1016/j.tim.2010.06.003
  26. Thomas, N. A., S. L. Bardy, and K. F. Jarrell (2001) The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS Microbiol. Rev. 25: 147-174. https://doi.org/10.1111/j.1574-6976.2001.tb00575.x
  27. Venter, J. C., K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen, D. Y. Wu, I. Paulsen, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy, A. H. Knap, M. W. Lomas, K. Nealson, O. White, J. Peterson, J. Hoffman, R. Parsons, H. Baden-Tillson, C. Pfannkoch, Y. H. Rogers, and H. O. Smith (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66-74. https://doi.org/10.1126/science.1093857
  28. Walker, C. B., J. R. de la Torre, M. G. Klotz, H. Urakawa, N. Pinel, D. J. Arp, C. Brochier-Armanet, P. S. G. Chain, P. P. Chan, A. Gollabgir, J. Hemp, M. Hugler, E. A. Karr, M. Konneke, M. Shin, T. J. Lawton, T. Lowe, W. Martens-Habbena, L. A. Sayavedra-Soto, D. Lang, S. M. Sievert, A. C. Rosenzweig, G. Manning, and D. A. Stahl (2010) Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and auto trophy in globally distributed marine crenarchaea. Proc. Natl. Acad. Sci. 107: 8818-8823. https://doi.org/10.1073/pnas.0913533107
  29. Woese, C. R. and G. E. Fox (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. 74: 5088-5090. https://doi.org/10.1073/pnas.74.11.5088
  30. Wuchter, C., B. Abbas, M. J. L. Coolen, L. Heffort, J. van Bleijswijk, P. Timmers, M. Strous, E. Teira, G. J. Herndl, J. J. Middelburg, S. Schouten, and J. S. S. Damste (2006) Archaeal nitrification in the ocean. Proc. Natl. Acad. Sci. 103: 12317-12322. https://doi.org/10.1073/pnas.0600756103