DOI QR코드

DOI QR Code

Mal-differentiation of Stem Cells: Cancer and Ageing

줄기세포의 분화 결손으로 인한 노화와 암화

  • Lee, Mi-Ok (College of Natural Sciences, Dept. of Life Sciences, Sogang University) ;
  • Cha, Hyuk-Jin (College of Natural Sciences, Dept. of Life Sciences, Sogang University)
  • 이미옥 (서강대학교 자연과학대학 생명과학과) ;
  • 차혁진 (서강대학교 자연과학대학 생명과학과)
  • Received : 2011.02.21
  • Accepted : 2011.05.21
  • Published : 2011.06.30

Abstract

Adult stem cells, which have characteristic of self-renewal and multipotency, are specialized cell types, responsible for the tissue regeneration of the damaged tissue. Recent studies suggest that stem cells senescence (or stem cells' ageing) is closely associated with the variety of ageing-related phenotypes such as tissue atrophy, degenerative diseases and onset of cancers. During ageing, declining of stem cells function and subsequently occurring mal-differentiation of stem cells would be important to understand the biological process of development of ageing-related phenotypes such as tissue degenerations and cancers. This review focuses on the DNA damage stress as a cause of senescence of stem cells and their mal differentiation, which is closely link to defect of regeneration potentials and neoplastic transformation. Understanding of molecular mechanisms governingsuch events is likely to have important implications for developing novel avenues for balancing tissue homeostasis longer period of time, further leading to 'Healthy ageing'.

Keywords

References

  1. Van Zant, G. and Y. Liang (2003) The role of stem cells in aging. Exp. Hematol. 31: 659-672. https://doi.org/10.1016/S0301-472X(03)00088-2
  2. Snyder, E. Y. and J. F. Loring (2005) A role for stem cell biology in the physiological and pathological aspects of aging. J. Am. Geriatr. Soc. 53: S287-S291. https://doi.org/10.1111/j.1532-5415.2005.53491.x
  3. Flores, I., A. Canela, E. Vera, A. Tejera, G. Cotsarelis, and M. A. Blasco (2008) The longest telomeres: a general signature of adult stem cell compartments. Genes Dev. 22: 654-667. https://doi.org/10.1101/gad.451008
  4. Finkel, T., M. Serrano, and M. A. Blasco (2007) The common biology of cancer and ageing. Nature 448: 767-774. https://doi.org/10.1038/nature05985
  5. Rando, T. A. (2006) Stem cells, ageing and the quest for immortality. Nature 441: 1080-1086. https://doi.org/10.1038/nature04958
  6. Watt, F. M. and B. L. Hogan (2000) Out of Eden: stem cells and their niches. Science 287: 1427-1430. https://doi.org/10.1126/science.287.5457.1427
  7. Hodgson, G. S. and T. R. Bradley (1984) In vivo kinetic status of hematopoietic stem and progenitor cells as inferred from labeling with bromodeoxyuridine. Exp. Hematol. 12: 683-687.
  8. Pas segue, E., A. J. Wagers, S. Giuriato, W. C. Anderson, and I. L. Weissman (2005) Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J. Exp. Med. 202: 1599-1611. https://doi.org/10.1084/jem.20050967
  9. Rossi, D. J., D. Bryder, J. M. Zahn, H. Ahlenius, R. Sonu, and A. J. Wagers, I. L. Weissman (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl. Acad. Sci. USA 102: 9194-9199. https://doi.org/10.1073/pnas.0503280102
  10. Sahin, E. and R. A. Depinho (2010) Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464: 520-528. https://doi.org/10.1038/nature08982
  11. Hawke, T. J. and D. J. Garry (2001) Myogenic satellite cells: physiology to molecular biology. J. Appl. Physiol. 91: 534-551.
  12. Brack, A. S., M. J. Conboy, S. Roy, M. Lee, C. J. Kuo, C. Keller, and T. A. Rando (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317: 807-810. https://doi.org/10.1126/science.1144090
  13. Lichtman, M. A. and J. M. Rowe (2004) The relationship of patient age to the pathobiology of the clonal myeloid diseases. Semin. Oncol. 31: 185-197. https://doi.org/10.1053/j.seminoncol.2003.12.029
  14. Linton, P. J. and K. Dorshkind (2004) Age-related changes in lymphocyte development and function. Nat. Immunol. 5: 133-139.
  15. Guralnik, J. M., R. S. Eisenstaedt, L. Ferrucci, H. G. Klein, and R. C. Woodman (2004) Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood 104: 2263-2268. https://doi.org/10.1182/blood-2004-05-1812
  16. Kollman, C., C. W. Howe, C. Anasetti, J. H. Antin, S. M. Davies, A. H. Filipovich, J. Hegland, N. Kamani, N. A. Kernan, R. King, V. Ratanatharathorn, D. Weisdorf, and D. L. Confer (2001) Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: the effect of donor age. Blood 98: 2043-2051. https://doi.org/10.1182/blood.V98.7.2043
  17. Rossi, D. J., C. H. Jamieson, and I. L. Weissman (2008) Stems cells and the pathways to aging and cancer. Cell 132: 681-696. https://doi.org/10.1016/j.cell.2008.01.036
  18. Kuhn, H. G., H. Dickinson-Anson, and F. H. Gage (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16: 2027-2033.
  19. Encinas, J. M., T. V. Michurina, N. Peunova, J. H. Park, J. Tordo, D. A. Peterson, G. Fishell, A. Koulakov, and G. Enikolopov (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 8: 566-579. https://doi.org/10.1016/j.stem.2011.03.010
  20. Enwere, E., T. Shingo, C. Gregg, H. Fujikawa, S. Ohta, and S. Weiss (2004) Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J. Neurosci. 24: 8354-8365. https://doi.org/10.1523/JNEUROSCI.2751-04.2004
  21. Drapeau, E. and D. Nora Abrous (2008) Stem cell review series: role of neurogenesis in age-related memory disorders. Aging Cell 7: 569-589. https://doi.org/10.1111/j.1474-9726.2008.00369.x
  22. Colmegna, I., A. Diaz-Borjon, H. Fujii, L. Schaefer, J. J. Goronzy, and C. M. Weyand (2008) Defective proliferative capacity and accelerated telomeric loss of hematopoietic progenitor cells in rheumatoid arthritis. Arthritis Rheum. 58: 990-1000. https://doi.org/10.1002/art.23287
  23. Oliveras, A., M. J. Soler, O. M. Martinez-Estrada, S. Vazquez, D. Marco-Feliu, J. S. Vila, S. Vilaro, and J. Lloveras (2008) Endothelial progenitor cells are reduced in refractory hypertension. J. Hum. Hypertens 22: 183-190. https://doi.org/10.1038/sj.jhh.1002304
  24. Ruzankina, Y., C. Pinzon-Guzman, A. Asare, T. Ong, L. Pontano, G. Cotsarelis, V. P. Zediak, M. Velez, A. Bhandoola, and E. J. Brown (2007) Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1: 113-126. https://doi.org/10.1016/j.stem.2007.03.002
  25. Roggli, V. L., R. T. Vollmer, S. D. Greenberg, M. H. McGavran, H. J. Spjut, and R. Yesner (1985) Lung cancer heterogeneity: a blinded and randomized study of 100 consecutive cases. Hum. Pathol. 16: 569-579. https://doi.org/10.1016/S0046-8177(85)80106-4
  26. Klein, C. A., T. J. Blankenstein, O. Schmidt-Kittler, M. Petronio, B. Polzer, N. H. Stoecklein, and G. Riethmuller (2002) Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360: 683-689. https://doi.org/10.1016/S0140-6736(02)09838-0
  27. Fialkow, P. J., G. B. Faguet, R. J. Jacobson, K. Vaidya, and S. Murphy (1981) Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell. Blood 58: 916-919.
  28. Sell, S. and H. A. Dunsford (1989) Evidence for the stem cell origin of hepatocellular carcinoma and cholangiocarcinoma. Am. J. Pathol. 134: 1347-1363.
  29. Cairns, J. (1975) Mutation selection and the natural history of cancer. Nature 255: 197-200. https://doi.org/10.1038/255197a0
  30. Karpowicz, P., C. Morshead, A. Kam, E. Jervis, J. Ramunas, V. Cheng, and D. van der Kooy (2005) Support for the immortal strand hypothesis: neural stem cells partition DNA asymmetrically in vitro. J. Cell BioI. 170: 721-732. https://doi.org/10.1083/jcb.200502073
  31. Kiel, M. J., S. He, R. Ashkenazi, S. N. Gentry, M. Teta, J. A. Kushner, T. L. Jackson, and S. J. Morrison (2007) Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449: 238-242. https://doi.org/10.1038/nature06115
  32. Lansdorp, P. M. (2007) Immortal strands? Give me a break. Cell 129: 1244-1247. https://doi.org/10.1016/j.cell.2007.06.017
  33. Rando, T. A. (2007) The immortal strand hypothesis: segregation and reconstruction. Cell 129: 1239-1243. https://doi.org/10.1016/j.cell.2007.06.019
  34. Bonnet, D. and J. E. Dick (1997) Human acute myeloid leukemia is organized as a hicrarchy that originates from a primitive hematopoietic cell. Nat. Med. 3: 730-737. https://doi.org/10.1038/nm0797-730
  35. AI-Hajj, M., M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke (2003) Prospective identification ofturnorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100: 3983-3988. https://doi.org/10.1073/pnas.0530291100
  36. Bjerkvig, R., B. B Tysnes, K. S. Aboody, J. Najbauer, and A. J. Terzis (2005) Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat. Rev. Cancer 5: 899-904. https://doi.org/10.1038/nrc1740
  37. Tirode, F., K. Laud-Duval, A. Prieur, B. Delonne, P. Charbord, and O. Delattre (2007) Mesenchymal stem cell features of Ewing tumors. Cancer Cell 11: 421-429. https://doi.org/10.1016/j.ccr.2007.02.027
  38. Riggi, N., M. L. Suva, D. Suva, L. Cironi, P. Provero, S. Tercier, J. M. Joseph, J. C. Stehle, K. Baumer, V. Kindler, and I. Stamenkovic (2008) EWS-FLI-l expression triggers a Ewing's sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res. 68: 2176-2185. https://doi.org/10.1158/0008-5472.CAN-07-1761
  39. Miyagawa, Y., H. Okita, H. Nakaijima, Y. Horiuchi, B. Sato, T. Taguchi, M. Toyoda, Y. U. Katagiri, J. Fujimoto, J. Hata, A. Umezawa, and N. Kiyokawa (2008) Inducible expression of chimeric EWSIETS proteins confers Ewing's family tumor-like phenotypes to human mesenchymal progenitor cells. Mol. Cell BioI. 28: 2125- 2137. https://doi.org/10.1128/MCB.00740-07
  40. Barker, N., R. A. Ridgway, J. H. van Es, M. van de Wetering, H. Begthel, M. van den Born, E. Danenberg, A. R. Clarke, O. J. Sansom, and H. Clevers (2009) Crypt stem cells as the cells-oforigin of intestinal cancer. Nature 457: 608-611. https://doi.org/10.1038/nature07602
  41. Alcantara, S. Llaguno, J. Chen, C. H. Kwon, E. L. Jackson, Y. Li, D. K. Bums, A. Alvarez-Buylla, and L. F. Parada (2009) Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15: 45-56. https://doi.org/10.1016/j.ccr.2008.12.006
  42. Wang, X., M. Kruithof-de Julio, K. D. Economides, D. Walker, H. Yu, M. V. Halili, Y. P. Hu, S. M. Price, C. Abate-Shen, and M. M. Shen (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461: 495-500. https://doi.org/10.1038/nature08361
  43. Lapouge, G., K. K. Youssef, B. Vokaer, Y. Achouri, C. Michaux, P. A. Sotiropoulou, and C. Blanpain (2011) Identifying the cellular origin of squamous skin tumors. Proc. Natl. Acad. Sci. USA 108: 7431-7436. https://doi.org/10.1073/pnas.1012720108
  44. Youssef, K. K., A. Van Keymeulen, G. Lapouge, B. Beck, C. Michaux, Y. Achouri, P. A. Sotiropoulou, and C. Blanpain (2010) Identification of the cell lineage at the origin of basal cell carcinoma. Nat. Cell BioI. 12: 299-305.
  45. Kirkwood, T. B. (2005). Understanding the odd science of aging. Cell 120: 437-447. https://doi.org/10.1016/j.cell.2005.01.027
  46. Rube, C. E., A. Fricke, T. A. Widmann, T. Furst, H. Madry, M. Pfreundschuh, and C. Rube (2011) Accumulation of DNA damage in hematopoictic stem and progenitor cells during human aging. PLoS One 6: e17487. https://doi.org/10.1371/journal.pone.0017487
  47. Sharpless, N. E. and R. A. DePinho (2007) How stem cells age and why this makes us grow old. Nat. Rev. Mol. Cell BioI. 8: 703-713. https://doi.org/10.1038/nrm2241
  48. Navarro, S., N. W. Meza, O. Quintana-Bustamante, J. A. Casado, A. Jacome, K. McAllister, S. Puerto, J. Surralles, J. C. Segovia, and J. A. Bueren (2006) Hematopoietic dysfunction in a mouse model for Fanconi anemia group D1. Mol. Ther. 14: 525-535. https://doi.org/10.1016/j.ymthe.2006.05.018
  49. Reese, J. S., L. Liu, and S. L. Gerson (2003) Repopulating defect of mismatch repair-deficient hematopoietic stem cells. Blood 102: 1626-1633. https://doi.org/10.1182/blood-2002-10-3035
  50. Prasher, J. M., A. S. Lalai, C. Heijmans-Antonissen, R. E. Plocmacher, J. H. Hoeijrnakers, I. P. Touw, and L. J. Niedernhofer (2005) Reduccd hematopoietic reserves in DNA interstrand crosslink repair-deficient Erccl-/- mice. EMBO J. 24: 861-871. https://doi.org/10.1038/sj.emboj.7600542
  51. Morales, M., J. W. Theunissen, C. F. Kim, R. Kitagawa, M. B. Kastan, and J. H. Petrini (2005) The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mrell complex as a DNA damage sensor. Genes Dev. 19: 3043-3054. https://doi.org/10.1101/gad.1373705
  52. Rossi, D. J., D. Bryder, J. Seita, A. Nussenzweig, J. Hoeijrnakers, and I. L. Weissman (2007) Deficiencies in DNA damage repair limit the function ofhaematopoietic stem cells with age. Nature 447: 725-729. https://doi.org/10.1038/nature05862
  53. Wang, Y., B. Schulte, A. LaRue, M. Ogawa, and D. Zhou (2006) Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood 107: 358-366. https://doi.org/10.1182/blood-2005-04-1418
  54. Vijg, J., R. A. Busuttil, R. Bahar, and M. E. Dolle (2005) Aging and genome maintenance. Ann. NY Acad. Sci. 1055: 35-47. https://doi.org/10.1196/annals.1323.007
  55. Park, Y. and S. L. Gerson (2005) DNA repair defects in stem cell function and aging. Annu. Rev. Med. 56: 495-508. https://doi.org/10.1146/annurev.med.56.082103.104546
  56. Jaskelioff, M., F. L. Muller, J. H. Paik, E. Thomas, S. Jiang, A. C. Adams, E. Sahin, M. Kost-Alimova, A. Protopopov, J. Cadinanos, J. W. Horner, E. Maratos-Flier, and R. A. Depinho (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469: 102-106. https://doi.org/10.1038/nature09603
  57. Campisi, J. (2003) Cancer and agcing: rival demons? Nat. Rev. Cancer 3: 339-349. https://doi.org/10.1038/nrc1073
  58. Serrano, M. and M. A. Blasco (2007) Cancer and ageing: convergent and divergent mechanisms. Nat. Rev. Mol. Cell BioI. 8: 715-722. https://doi.org/10.1038/nrm2242