DOI QR코드

DOI QR Code

서로 다른 몰비의 Al/(Al+Ce)를 가진 Al-Ce 혼합산화물에 담지된 Pt 촉매 상에서의 일산화탄소 산화반응

CO Oxidation Over Pt Supported on Al-Ce Mixed Oxide Catalysts with Different Mole Ratios of Al/(Al+Ce)

  • Park, Jung-Hyun (Department of Chemical Engineering, Chungbuk National University) ;
  • Cho, Kyung-Ho (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Yun-Jung (Department of Chemical Engineering, Chungbuk National University) ;
  • Shin, Chae-Ho (Department of Chemical Engineering, Chungbuk National University)
  • 투고 : 2011.04.14
  • 심사 : 2011.05.25
  • 발행 : 2011.06.30

초록

지지체의 구성비가 일산화탄소 산화반응에 미치는 영향을 조사하기 위하여 다양한 몰 비의 Al/(Al+Ce) 산화물을 공침법으로 제조하고 백금을 담지한 촉매를 함침법으로 제조하였다. 제조한 촉매의 물리 화학적 특성을 알아보고 반응 활성과 연관시키기 위하여 X-선 회절분석(XRD), 질소 흡착 탈착분석($N_2$ sorption), 수소/일산화탄소-승온환원분석($H_2$/CO-TPR)의 특성분석을 수행하였다. Pt/xAl-yCe 촉매에서 지지체의 몰 비에 따른 최적 활성을 조사한 결과, 건식 및 습식 반응조건에서 Pt/1Al-9Ce 촉매가 가장 좋은 활성을 나타냈으며, 이를 기준으로 회산형 형태의 반응 곡선을 나타냈다. 반응물에 5%의 수분이 존재 할 때, 50%의 전환율 온도가 건조 반응조건에서의 활성보다 약 $30^{\circ}C$ 저온으로 이동하였다. CO-TPR 분석에서Pt/1Al-9Ce 촉매 상의 이산화탄소 탈착피크가 가장 크게 관찰되었고, CO-TPR 결과는 반응결과와 잘 일치하였다. 이는 다른 촉매에 비해 Pt/1Al-9Ce 촉매의 표면 흡착점이 가장 많고 지지체로부터 산소공급이 용이함을 의미한다. 또한 $^{27}Al$ NMR 분석에서 오면체로 배위된 $Al^{3+}$ 점의 양과 반응 활성이 비례관계에 있음을 확인하였다.

The xAl-yCe oxide catalysts with different mol ratios of Al/(Al+Ce) were prepared by a co-precipitation method and Pt supported on xAl-yCe oxide catalysts were synthesized by an incipient wetness impregnation method. The catalysts were characterized by X-ray Diffraction (XRD), $N_2$ sorption, and $H_2$/CO-temperature programmed reduction ($H_2$/CO-TPR) to correlate with catalytic activities in co oxidation. Among the catalysts studied here, Pt/1Al-9Ce oxide catalyst showed the highest activity in dry and wet reaction conditions and the catalytic activity showed a typical volcano-shape curve with respect to Al/(Al+Ce) mol ratio. When the presence of 5% water vapor in the feed, the temperature of $T_{50%}$ was shifted ca. $30^{\circ}C$ to lower temperature region than that in dry condition. From CO-TPR, the desorption peak of $CO_2$ on Pt/1Al-9Ce oxide catalyst showed the highest value and well correlated the catalytic performance. It indicates that the Pt/1Al-9Ce oxide catalyst has a large amount of active sites which can be adsorbed by co and easy to supplies the needed oxygen. In addition, the amount of pentacoordinated $Al^{3+}$ sites obtained through $^{27}Al$ NMR analysis is well correlated the catalytic performance.

키워드

참고문헌

  1. Tiernan, M. J., and Finlayson, O. E., "Effects of Ceria on the Combustion Activity and Surface Properties of Pt/$Al_{2}O_{3}$ Catalysts," Appl. Catal. B: Environ., 19(1), 23-35 (1998). https://doi.org/10.1016/S0926-3373(98)00055-1
  2. Kim, M.-Y., Jung, S. B., Kim, M. G., You, Y. S., Park, J.-H., Shin, C.-H., and Seo, G., "Preparation of Highly Dispersive and Stable Platinum Catalysts Supported on Siliceous SBA-15 Mesoporous Material: Roles of Titania Layer Incorporation and Hydrogen Peroxide Treatment," Catal. Lett., 129(1-2), 194-206 (2009). https://doi.org/10.1007/s10562-008-9790-0
  3. Kim, J.-R., Myeong, W.-J., and Ihm, S.-K., "Characteristics of $CeO_{2}-ZrO_{2}$ Mixed Oxide Prepared by Continuous Hydro-thermal Synthesis in Supercritical Water as Support of Rh Catalyst for Catalytic Reduction of NO by CO," J. Catal., 263(1), 123-133 (2009). https://doi.org/10.1016/j.jcat.2009.02.001
  4. Damyanova, S., Perez, C., Schmal, A. M., and Bueno, J. M. C., "Characterization of Ceria-coated Alumina Carrier," Appl. Catal. A: Gen., 234(1-2), 271-282 (2002). https://doi.org/10.1016/S0926-860X(02)00233-8
  5. Yao, Y.-F. Y., "The Oxidation of CO and Hydrocarbons over Noble Metal Catalysts," J. Catal., 87(1), 152-162 (1984). https://doi.org/10.1016/0021-9517(84)90178-7
  6. Lee, H. C., and Kim, D. H. "Kinetics of CO and $H_{2}$ Oxidation over CuO-$CeO_{2}$ Catalyst in $H_{2}$ Mixtures with $CO_{2}$ and $H_{2}O$," Catal. Today, 132(1-4), 109-116 (2008). https://doi.org/10.1016/j.cattod.2007.12.028
  7. Wu, Z., Zhu, H., Qin, Z., Wang, H., Ding, J., Huang, L., and Wang, J., "CO Preferential Oxidation in $H_{2}$-rich Stream over a CuO/$CeO_{2}$ Catalyst with High $H_{2}O$ and $CO_{2}$ Tolerance," Fuel. 2010 DOI:10.1016/j.fuel.2010.03.001
  8. Chen, Y.-Z., Liaw, B.-J., Chang, W.-C., and Huang, C.-T., "Selective Oxidation of CO in Excess Hydrogen over CuO/$Ce_{x}Zr_{1-x}O_{2}-Al_{2}O_{3}$ Catalysts," Inter. J. Hyd. Ener., 32(17), 4550-4558 (2007). https://doi.org/10.1016/j.ijhydene.2007.06.021
  9. Avgouropoulos, G., and Ioannides, T., "Selective CO Oxidation over CuO-$CeO_{2}$ Catalysts Prepared via the Urea-nitrate Combustion Method," Appl. Catal. A: Gen., 244(1), 155-167 (2003). https://doi.org/10.1016/S0926-860X(02)00558-6
  10. Simsek, E., Ozkara, S., Aksoylu, A. E., and Onsan, Z. I., "Preferential CO Oxidation over Activated Carbon Supported Catalysts in $H_{2}$-rich Gas Streams Containing $CO_{2}$ and $H_{2}O$," Appl. Catal. A: Gen., 316(2), 169-174 (2007). https://doi.org/10.1016/j.apcata.2006.09.001
  11. Trimm, D. L., "Minimization of Carbon Monoxide in a Hydrogen Stream for Fuel Cell Application," Appl. Catal. A: Gen., 296(1), 1-11 (2005). https://doi.org/10.1016/j.apcata.2005.07.011
  12. Manasilp, A., and Gulari, E., "Selective CO Oxidation over Pt/alumina Catalysts for Fuel Cell Applications," Appl. Catal. B: Environ., 37(1) 17-25 (2002). https://doi.org/10.1016/S0926-3373(01)00319-8
  13. Goguet, A., Shekhtman, S. O., Burch, R., Hardacre, C., Meunier, F. C., and Yablonsky G. S., "Pulse-response TAP Studies of the Reverse Water-gas Shift Reaction over a Pt/$CeO_{2}$ Catalyst," J. Catal., 237(1), 102-110 (2006). https://doi.org/10.1016/j.jcat.2005.10.020
  14. Azzam, K. G., Babich I. V., Seshan K., and Lefferts, L., "Bifunctional Catalysts for Single-stage Water-gas Shift Reaction in Fuel Cell Applications.: Part 1. Effect of the Support on the Reaction Sequence," J. Catal., 251(1), 153-162 (2007). https://doi.org/10.1016/j.jcat.2007.07.010
  15. Andreeva, D., Ivanov, I., Ileva, L., Sobczak, J. W., Avdeev, G., and Tabakova, T., "Nanosized Gold Catalysts Supported on Ceria and Ceria-alumina for WGS Reaction: Influence of the Preparation Method," Appl. Catal. A: Gen., 333, 153-160 (2007). https://doi.org/10.1016/j.apcata.2007.04.011
  16. Damyanova, S., and Bueno, J. M. C., "Effect of $CeO_{2}$ Loading on the Surface and Catalytic Behaviors of $CeO_{2}-Al_{2}O_{3}$- Supported Pt Catalysts," Appl. Catal. A: Gen., 253(1), 135-150 (2003). https://doi.org/10.1016/S0926-860X(03)00500-3
  17. Santos, A. C. S. F., Damyanova, S., Teixeira, G. N. R., Mattos, L. V., Noronha, F. B., Passos, F. B., and Bueno, J. M. C., "The Effect of Ceria Content on the Performance of Pt/$CeO_{2}/Al_{2}O_{3}$ Catalysts in the Partial Oxidation of Methane," Appl. Catal. A: Gen., 290(1-2), 123-132 (2005). https://doi.org/10.1016/j.apcata.2005.05.015
  18. Fu, Q., Saltsburg, H., and Flytzani-Stephanopoulos, M., "Active Nonmetallic Au and Pt Species on Ceria-based Water-gas Shift Catalysts," Science, 301, 935-938 (2003). https://doi.org/10.1126/science.1085721
  19. Bunluesin, T., Gorte, R. J., and Graham, G. W., "Studies of the Water-gas-shift Reaction on Ceria-supported Pt, Pd, and Rh: Implications for Oxygen-storage Properties," Appl. Catal. B: Environ., 15(1-2) 107-114 (1998). https://doi.org/10.1016/S0926-3373(97)00040-4
  20. Li, Y., Fu, Q., and Flytzani-Stephanopoulos, M., "Low-temperature Water-gas Shift Reaction over Cu- and Ni-loaded Cerium Oxide Catalysts," Appl. Catal. B: Environ., 27(3) 179-191 (2000). https://doi.org/10.1016/S0926-3373(00)00147-8
  21. Zhai, Y., Pierre, D., Si, R,, Deng, W., Ferrin, P., Nilekar, A. U., Peng, G., Herron, J. A., Bell, D. C. Saltsburg, H., Mavrikakis, M., and Flytzani-Stephanipoulos, M., "Alkali-Stabilized Pt-OHx Species Catalyze Low-temperature Water-gas shift reactions," Science, 329, 1633-1636 (2010). https://doi.org/10.1126/science.1192449
  22. Kwak, J. H., Hu, J. Z., Kim, D. H., Szanyi, J., Peden, C. H. F., "Penta-coordinated $Al^{3+}$ Ions as Preferential Nucleation Sites for BaO on $\gamma-Al_{2}O_{3}$: An Ultra-high-magnetic Field $^{27}Al$ MAS NMR Study," J. Catal., 251(1), 189-194 (2007). https://doi.org/10.1016/j.jcat.2007.06.029
  23. Kwak, J. H., Hu, J., Lukaski, A., Kim, D. H., Szanyi, J., and Peden, C. H. F., "Role of Pentacoordinated $Al^{3+}$ Ions in the High Temperature Phase Transformation of $\gamma-Al_{2}O_{3}$," J. Phys. Chem. C., 112, 9486-9492 (2008). https://doi.org/10.1021/jp802631u
  24. Kwak, J. H., Hu, J., Mei, D., Yi, C.-W., Kim, D. H. Peden, C. H. F., Allard, L. F. and Szanyi, J., "Coordinatively Unsaturated $Al^{3+}$ Centers as Binding Sites for Active Catalyst Phases of Platinum on $\gamma-Al_{2}O_{3}$," Science, 325, 1670-1673 (2009). https://doi.org/10.1126/science.1176745