Developmental Toxicity of Alkylphenols in Amphibians: A Review

알킬페놀류 화합물의 양서류 발생독성: 종설

  • Park, Chan-Jin (Department of Life Science and Institute for Natural Sciences, Hanyang University) ;
  • Ahn, Hae-Sun (Department of Life Science and Institute for Natural Sciences, Hanyang University) ;
  • Ahn, Hyo-Min (Department of Life Science and Institute for Natural Sciences, Hanyang University) ;
  • Gye, Myung-Chan (Department of Life Science and Institute for Natural Sciences, Hanyang University)
  • 박찬진 (한양대학교 자연과학대학 생명과학과) ;
  • 안혜선 (한양대학교 자연과학대학 생명과학과) ;
  • 안효민 (한양대학교 자연과학대학 생명과학과) ;
  • 계명찬 (한양대학교 자연과학대학 생명과학과)
  • Received : 2011.02.24
  • Accepted : 2011.06.05
  • Published : 2011.06.30

Abstract

Aquatic contamination by organic pollutants has been a suspected reason for rapid decrease of amphibian populations whose embryonic and larval stages are in an aquatic environment. Amphibian embryos can be a useful model to study the ecoctoxicologial impacts of aquatic pollutants. The obtained toxicological data are useful references for the management of aquatic pollutants in public health because amphibia share many developmental events with terrestrial vertebrates including humans. Safety guidelines for the toxicological effects of aquatic contaminants of chemicals identified as hazardous should be addressed at multiple endpoints. Alkylphenols have been widely-used in agricultural, industrial, and household activities; they contaminate and can persist in aquatic environments. Exposure to alkylphenols results in endocrine disruption in aquatic animals. In this review, we summarize the developmental toxicities of alkylphenols in amphibian embryos and larva according to the exposure route, chemical concentration, duration of exposure, and affected developmental stage together with mechanisms of toxicity and typical patterns of developmental abnormality. The merits of amphibian embryos as a toxicity test model for mid- to long-term exposure to aquatic pollutants are discussed proposed.

내분비계장애물질과 같은 유기화합물에 의한 수계의 오염은 지구적인 양서류 감소의 원인으로 의심되고 있다. 양서류는 수정 후 변태에 이르는 생활사를 수중에서 진행하므로 수환경 오염물질에 의한 독성효과를 연구하기에 적합한 모델이다. 또한 양서류는 인간을 비롯한 육상척추동물과 발생학적으로 많은 공통점을 가지므로 공중보건학적 관점에서도 수환경 오염물질의 위해성 평가에 적항한 모델생물이다. 특정 화학물질이나 환경매체의 안전관리 기준을 설정하고 수환경의 독성물질 관리를 위해서는 다양한 독성종말점에서 독성정보가 필요하다. 알킬페놀류 화합물은 농업, 공업, 가정활동에 사용되고 있으며, 수환경 내에 잔류하여 다양한 수생동물에서 내분비계장애효과를 갖는다. 본 소고에서는 양서류의 배아, 유생을 대상으로 알킬페놀류 화합물의 종류별, 노출경로 및 농도, 노출 시기에 따른 발생장애와 발생기형 유발효과와 그 기작에 관한 국내외 자료를 정리하였다. 육수환경 잔류 오염물질의 중장기 노출독성 평가모델로서 양서류배아 발생독성평가법의 유용성을 제안하였다.

Keywords

References

  1. American Society for Testing Materials (ASTM). 1993. Standard guide for conducting the Frog Embryo Teratogenesis Assay-Xenopus (Fetax). ASTM Standards on Aquatic Toxicology and Hazard Evaluation. ASTM, Philadelphia, PA, USA. pp. 457-467.
  2. Baba, K., K. Okada, T. Kinoshita and S. Imaoka. 2009. Bisphenol A disrupts Notch signaling by inhibiting gammasecretase activity and causes eye dysplasia of Xenopus laevis. Toxicological Science 108: 344-355. https://doi.org/10.1093/toxsci/kfp025
  3. Bevan, C.L., D.M. Porter, A. Prasad, M.J. Howard and L.P. Henderson. 2003. Environmental estrogens alter early development in Xenopus laevis. Environmental Health and Perspectives 111: 488-496.
  4. Bevan, C.L., D.M. Porter, C.R. Schumann, E.Y. Bryleva, T.J. Hendershot, H. Liu, M.J. Howard and L.P. Henderson. 2006. The endocrine-disrupting compound, nonylphenol, inhibits neurotrophin-dependent neurite outgrowth. Endocrinology 147: 4192-4204. https://doi.org/10.1210/en.2006-0581
  5. Blaustein, A.R. and D.B. Wake. 1995. The puzzle of declining amphibian populations. Scientific American 272: 52-57.
  6. Bogi, C., J. Schwaiger, H. Ferling, U. Mallow, C. Steineck, F. Sinowatz, W. Kalbfus, R.D. Negele, I. Lutz and W. Kloas. 2003. Endocrine effects of environmental pollution on Xenopus laevis and Rana temporaria. Environmental Research 93: 195-201. https://doi.org/10.1016/S0013-9351(03)00082-3
  7. Boyer, R. and C.E. Grue. 1995. The need for water quality criteria for frogs. Environmental Health and Perspectives 103: 352-357. https://doi.org/10.1289/ehp.95103352
  8. Carey, C. and C.J. Bryant. 1995. Possible interrelations among environmental toxicants, amphibian development, and decline of amphibian populations. Environmental Health and Perspectives 103 Suppl. 4: 13-17.
  9. Gosner, K.L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183-190.
  10. Hogan, N.S., D.R. Lean and V.L. Trudeau. 2006. Exposures to estradiol, ethinylestradiol and octylphenol affect survival and growth of Rana pipiens and Rana sylvatica tadpoles. Journal of Toxicology and Environmental Health, Part A 69: 1555-1569. https://doi.org/10.1080/15287390500470759
  11. Houlahan, J.E., C.S. Findlay, B.R. Schmidt, A.H. Meyer and S.L. Kuzmin. 2000. Quantitative evidence for global amphibian population declines. Nature 404: 752-755. https://doi.org/10.1038/35008052
  12. Imaoka, S., T. Mori and T. Kinoshita. 2007. Bisphenol A causes malformation of the head region in embryos of Xenopus laevis and decreases the expression of the ESR-1 gene mediated by Notch signaling. Biological & Pharmaceutical Bulletin 30: 371-374. https://doi.org/10.1248/bpb.30.371
  13. Iwamuro, S., M. Sakakibara, M. Terao, A. Ozawa, C. Kurobe, T. Shigeura, M. Kato and S. Kikuyama. 2003. Teratogenic and anti-metamorphic effects of bisphenol A on embryonic and larval Xenopus laevis. General and Comparative Endocrinology 133: 189-198. https://doi.org/10.1016/S0016-6480(03)00188-6
  14. Kloas, W. and I. Lutz. 2006. Amphibians as model to study endocrine disrupters. Journal of Chromatography A 1130: 16-27. https://doi.org/10.1016/j.chroma.2006.04.001
  15. Kuriyama, S., A. Ueda and T. Kinoshita. 2003. Xerl is a secreted protein required for establishing the neural plate/neural crest boundary in Xenopus embryo. Journal of Experimental Zoology Part A 296: 108-116.
  16. Lahr, J. 1997. Ecotoxicology of organisms adapted to life in temporary freshwater ponds in arid and semi-arid regions. Archives of Environmental Contamination and Toxicology 32: 50-57. https://doi.org/10.1007/s002449900154
  17. Loeffler, I.K., D.L. Stocum, J.F. Fallon and C.U. Meteyer. 2001. Leaping lopsided: a review of the current hypotheses regarding etiologies of limb malformations in frogs. The Anatomical Record 265: 228-245. https://doi.org/10.1002/ar.10009
  18. Mann, R.M. and J.R. Bidwell. 2000. Application of the FETAX protocol to assess the developmental toxicity of nonylphenol ethoxylate to Xenopus laevis and two Australian frogs. Aquatic Toxicology 51: 19-29. https://doi.org/10.1016/S0166-445X(00)00106-5
  19. Mann, R.M. and J.R. Bidwell. 2001. The acute toxicity of agricultural surfactants to the tadpoles of four Australian and two exotic frogs. Environmental Pollution 114: 195- 205. https://doi.org/10.1016/S0269-7491(00)00216-5
  20. Nieuwkoop, P. and J. Faber. 1967. Normal Table of Xenopus laevis (Daudin). Hubrecht Lab., Utrecht; North- Holland Publishing Co., Amsterdam (2nd. edn.).
  21. Nishimura, N., Y. Fukazawa, H. Uchiyama and T. Iguchi. 1997. Effects of estrogenic hormones on early development of Xenopus laevis. Journal of Experimental Zoology 278: 221-233. https://doi.org/10.1002/(SICI)1097-010X(19970701)278:4<221::AID-JEZ3>3.0.CO;2-R
  22. Oka, T., N. Adati, T. Shinkai, K. Sakuma, T. Nishimura and K. Kurose. 2003. Bisphenol A induces apoptosis in central neural cells during early development of Xenopus laevis. Biochemical and Biophysical Research Communications 312: 877-882. https://doi.org/10.1016/j.bbrc.2003.10.199
  23. Park, C.J., H.S. Kang and M.C. Gye. 2010. Effects of nonylphenol on early embryonic development, pigmentation and 3,5,3′-triiodothyronine-induced metamorphosis in Bombina orientalis (Amphibia: Anura). Chemosphere 81: 1292-1300. https://doi.org/10.1016/j.chemosphere.2010.08.039
  24. Pickford, D.B., M.J. Hetheridge, J.E. Caunter, A.T. Hall and T.H. Hutchinson. 2003. Assessing chronic toxicity of bisphenol A to larvae of the African clawed frog (Xenopus laevis) in a flow-through exposure system. Chemosphere 53: 223-235. https://doi.org/10.1016/S0045-6535(03)00308-4
  25. Ra, J.S., S.H. Lee, J. Lee, H.Y. Kim, B.J. Lim, S.H. Kim and S.D. Kim. 2011. Occurrence of estrogenic chemicals in South Korean surface waters and municipal waste waters. Journal of Environmental Monitoring 13: 101- 109. https://doi.org/10.1039/c0em00204f
  26. Sone, K., M. Hinago, A. Kitayama, J. Morokuma, N. Ueno, H. Watanabe and T. Iguchi. 2004. Effects of 17betaestradiol, nonylphenol, and bisphenol-A on developing Xenopus laevis embryos. General and Comparative Endocrinology 138: 228-236. https://doi.org/10.1016/j.ygcen.2004.06.011
  27. Watanabe, Y., H. Kokubo, S. Miyagawa-Tomita, M. Endo, K. Igarashi, K. Aisaki, J. Kanno and Y. Saga. 2006. Activation of Notch1 signaling in cardiogenic mesoderm induces abnormal heart morphogenesis in mouse. Development 133: 1625-1634. https://doi.org/10.1242/dev.02344