DOI QR코드

DOI QR Code

Fabrication of X-ray monocapillary optics for soft X-ray fluorescence analysis

경 X선 형광분석을 위한 모세관 광학소자 제작

  • Cho, Hyung-Wook (Department of Radiological Science, Catholic University of Daegu) ;
  • Park, Byung-Hoon (Department of Radiological Science, Catholic University of Daegu) ;
  • Kim, Yong-Min (Department of Radiological Science, Catholic University of Daegu) ;
  • Choi, Chul-Hee (Department of Audiology and Speech-language Pathology, Catholic University of Daegu) ;
  • Choi, Seong-Hee (Department of Audiology and Speech-language Pathology, Catholic University of Daegu) ;
  • Kim, Ki-Hong (Department of Optometry and Vision Science, Catholic University of Daegu) ;
  • Chon, Kwon-Su (Department of Radiological Science, Catholic University of Daegu)
  • 조형욱 (대구가톨릭대학교 방사선학과) ;
  • 박병훈 (대구가톨릭대학교 방사선학과) ;
  • 김용민 (대구가톨릭대학교 방사선학과) ;
  • 최철희 (대구가톨릭대학교 언어청각치료학과) ;
  • 최성희 (대구가톨릭대학교 언어청각치료학과) ;
  • 김기홍 (대구가톨릭대학교 안경광학과) ;
  • 천권수 (대구가톨릭대학교 방사선학과)
  • Received : 2011.12.02
  • Accepted : 2011.12.22
  • Published : 2011.12.30

Abstract

An X-ray tube used an X-ray fluorescence analysis system has a low X-ray photon intensity which results in reducing measurement accuracy and increasing exposure time. These shortages can be overcame by using a monocapillary optics. A monocapillary optics was optimally designed for focusing the characteristic X-ray of tungsten (8.4 keV). The monocapillary optics can achieve a gain of 10 at the least. The monocapillary optics was fabricated by using puller and pyrex glass, raw material. In fabrication, a weigh of 45g and a temperature of $650^{\circ}$ was loaded. The total fabrication time was 460 minutes. The fabricated capillary had 87 mm in length and maximum diameter of 300 ${\mu}m$ and minimum diameter of 192 ${\mu}m$. When the fabricated monocapillary optics is applied to an X-ray fluorescence analysis system, the detection accuracy for soft elements, for example sulfur (S), will be improved.

경 X선 형광분석 기법에 사용되는 X선 튜브는 X선의 휘도가 낮아 분석의 정밀도가 떨어지고 분석 시간 또한 오래 걸린다. 모세관 집광소자를 이용하면 X선 휘도의 이득(gain)을 최소 10 이상 얻을 수가 있다. 모세관 광학소자는 8.4keV의 텅스텐 특성방사선을 효율적으로 집광할 수 있도록 설계되었다. 파이렉스 유리로 된 모세관 모재를 풀러(puller)를 이용하여 45 g의 추에 $650^{\circ}$의 온도를 가하여 모세관 광학소자를 제작하였다. 모세관 광학소자의 제작은 총 460분이 소요되었으며 제작된 모세관 광학소자의 길이는 87 mm, X선 입사부의 직경은 300 ${\mu}m$, 출구부의 직경은 192 ${\mu}m$로 제작되었다. 제작된 모세관 광학소자를 경 X선 형광분석에 적용하면 황(S)과 같은 경원소 검출의 정밀도를 높일 수 있을 것이다.

Keywords

References

  1. S. Bichlmerier, K. Janssens, J. Heckel, P. Hoffmann, and H. M. Ortner, "Comparative material characterization of historical and industrial samples using a compact micro XRF spectrometer", X-ray Spectrom., Vol. 31, pp.87-91, 2002. https://doi.org/10.1002/xrs.563
  2. C. Fiorini, A. Longoni, and A. Bjeoumikhov, "New detection system with polycapillary conic collimator for high-localized analysis of X-ray fluorescence emission", IEEE Trans. Nucl. Sci., Vol. 48, pp.268-271, 2001. https://doi.org/10.1109/23.940063
  3. U. Arndt, P. Duncumb, J. V. P. Long, L. Pina, and A. Inneman, "Focusing mirrors for use with microfocus x-ray tubes", J. Appl. Cryst., Vol. 31, pp.733-741, 1998. https://doi.org/10.1107/S0021889898004439
  4. B. Cai, W. Yun, D. Degnini, Y. Xiao, J. Chrzas, P. Viccaro, V. White, S. Bajikar, D. Dento, F. Cerrina, E. Fabrizio, M. Gentili, L. Grella and M. Baciocchi, "Hard x-ray phase zone plate fabricated by lithographic technique", Appl. Phys. Lett. Vol. 61, pp.1877-1879, 1992. https://doi.org/10.1063/1.108400
  5. J. Hunderwood, T. Barbee Jr., and C. Frieber, "X-ray microscope with multilayer mirrors", Appl. Opt. Vol. 25, pp.1730-1732, 1986. https://doi.org/10.1364/AO.25.001730
  6. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, "A compound refractive lens for focusing high-energy X-rays", Nature, Vol 384, pp.49-51, 1996. https://doi.org/10.1038/384049a0
  7. K. S. Chon, Y. Namba, K. W. Kim, S. Kang, and K. H. Yoon, "Fabrication of a soft x-ray microscope mirror using an epoxy replication method", Optical Engineering, Vol. 47, pp.013401, 2008. https://doi.org/10.1117/1.2829608
  8. P. Kirkpatrick and A. Baez, "Formation of Optical Images by X-rays", J. Opt. Soc. Am., Vol. 38, pp.766-773, 1948. https://doi.org/10.1364/JOSA.38.000766
  9. D. H. Bilderback, "Microbeam generation with capillary optics", Rev. Sci. Instrum., Vol. 66, pp.2059-2063, 1995. https://doi.org/10.1063/1.1145727
  10. Y. I. Dudchik, F. F. Komarov and Y. A. Konstantinov, "Formation of X-ray beams with the aid of a tapered micro capillary", Tech. Phys. Vol. 43. pp.562-564, 1998. https://doi.org/10.1134/1.1259039
  11. T. Missalla, I. Uschmann, E. Forster, G. Jenke, and D. von der Linde, "Monochromatic focusing of subpicosecond x-ray pulse in the keV range", Rev. Sci. Instrum., Vol. 70, pp.1288-1299, 1999. https://doi.org/10.1063/1.1149587
  12. Y. Yan and X. Ding, "Investigation of X-ray fluorescence analysis with an X-ray focusing system", Nucl. Instrum. Meth. B, Vol 82, pp.121-124, 1993. https://doi.org/10.1016/0168-583X(93)95090-R
  13. A. H. Compton and S. K. Allison, X-rays in Theory and Experiment, Braunworth and Company, Inc., New York, 1936.
  14. B. Chen, "Theoretical consideration of X-ray transmission through cylinder capillaries", Rev. Sci. Instrum. Vol. 72, pp.1350-1353, 2001. https://doi.org/10.1063/1.1331324