DOI QR코드

DOI QR Code

Signal to Noise Ratio of MR Spectrum by variation echo time : comparison of 1.5T and 3.0T

Echo time에 따른 MR spectrum의 SNR: 1.5T와 3.0T비교

  • 김성길 (한려대학교 방사선학과) ;
  • 이규수 (한려대학교 방사선학과) ;
  • 임채평 (광양보건대학 방사선과)
  • Received : 2011.11.30
  • Accepted : 2011.12.22
  • Published : 2011.12.30

Abstract

The purpose of this study is to know the differences of MR spectra, obtained from normal volunteers by variable TE value, through the quantitative analysis of brain metabolites by peak integral and SNR between 1.5T and 3.0T, together with PRESS and STEAM pulse sequence. Single-voxel MR proton spectra of the human brain obtained from normal volunteers at both 3.0T MR system (Magnetom Trio, SIEMENS, Germany) and 1.5T MR system (Signa Twinspeed, GE, USA) using the STEAM and PRESS pulse sequence. 10 healthy volunteers (3.0T:3 males, 2 females; 1.5T : 3 males, 2 females) with the range from 22 to 30 years old (mean 26 years) participated in our study. They had no personal or familial history of neurological diseases and had a normal neurological examination. Data acquisition parameters were closely matched between the two field strengths. Spectra were recorded in the white matter of the occipital lobe. Spectra were compared in terms of resolution and signal-to-noise ratio(SNR), and echo time(TE) were estimated at both field strengths. Imaging parameters was used for acquisition of the proton spectrum were as follow : TR 2000msec, TE 30ms, 40ms, 50ms, 60ms, 90ms, 144ms, 288ms, NA=96, VOI=$20{\times}20{\times}20mm3$. As the echo times were increased, the spectra obtained from 3.0T and 1.5T show decreased peak integral and SNR at both pulse sequence. PRESS pulse sequence shows higher SNR and signal intensity than those of STEAM. Especially, Spectra in normal volunteers at 3.0T demonstrated significantly improved overall SNR and spectral resolution compared to 1.5T(Fig1). The spectra acquired at short echo time, 3T MR system shows a twice improvement in SNR compared to 1.5T MR system(Table. 1). But, there was no significant difference between 3.0Tand 1.5T at long TE It is concluded that PRESS and short TE is useful for quantification of the brain metabolites at 3.0T MRS, our standardized protocol for quantification of the brain metabolites at 3.0T MRS is useful to evaluate the brain diseases by monitoring the systematic changes of biochemical metabolites concentration in vivo.

TE를 변화시킨 정상인 대뇌의 MR spectrum에서 주요 대사물질의 면적과 SNR을 측정하여 PRESS 펄스파형과 STEAM 펄스파형 그리고 1.5T와 3.0T간의 자장세기에 따른 spectrum 간의 차이를 알아보고자 하였다. Phantom 실험을 통하여 적절한 TR을 정한 후, 정상인 지원자 10명(3.0T 5명, 1.5T 5명 ; 남 22~30세 : 평균 26세)을 대상으로 단일용적기법의 STEAM과 PRESS 기법을 시행하였다. 사용된 장비는 3.0T MR scanner(Magnetom Trio, SIEMENS, Germany)와 1.5T MR scanner(Signa Twinspeed GE, USA)이였다. 영상변수는 TR은 2000ms, TE는 30ms, 40ms, 50ms, 60ms, 90ms, 144ms, 288ms, NA는 96, 용적 크기는 $20{\times}20{\times}20mm3$로 하였으며, spectrum 획득시간은 3분 20초였다. 획득한 데이터는 후처리과정을 통하여 PRESS와 STEAM, 그리고 1.5T와 3.0T system 간의 NAA, Cho, Cr 등의 단순면적값과 SNR을 비교하였다. 또한 육안적 관찰을 통하여 각 대사물질들의 관찰정도를 비교하였다. 1.5T와 3.0T MR spectrum을 분석한 결과, STEAM과 PRESS의 주요 대사물질의 단순 면적값과 SNR은 TE가 증가함에 따라 감소하는 경향을 보였으며, PRESS는 STEAM보다 1.5T에서 1.4배, 3.0T에서 1.3배 높은 SNR을 보였다. 자장의 세기에 따른 SNR 비교에서는 TE가 30ms에서 3.0T가 1.5T보다 약 2배 정도 높은 SNR을 보였으나 TE값이 증가함에 따라 3.0T에서의 SNR 감소율이 1.5T에서의 SNR 감소율보다 커서 TE가 90ms 이상부터는 큰 차이가 없었다. 반면 3.0T의 spectrum에서는 1.5T에서 구분할 수 없었던 ${\alpha}$-Glx, ${\beta}{\cdot}{\gamma}$-Glx, NAA complex등 작은 대사물질들을 보다 정확히 감별 할 수 있었고 short TE의 PRESS일 때 short TE의 STEAM보다 작은 대사물질들이 잘 관찰 되었다. 3.0T spectrum의 해상도와 SNR이 1.5T spectrum에 비하여 우수함을 알 수 있었다. 그러나 90ms이상의 long TE에서는 3.0T와 1.5T spectrum간의 SNR은 차이가 없었다. 따라서 고자장하에서의 자기공명분광법은 30ms 이하의 짧은 TE를 이용한 PRESS 펄스 파형을 사용하는 것이 임상적으로 유용하게 사용될 수 있을 것이라 사료된다.

Keywords

References

  1. Bottomley DA. Human in vivo NMR spectroscopy in diagnostic medicine: clinical tool or research probe. Radiology Vol. 170, pp.1-15, 1989. https://doi.org/10.1148/radiology.170.1.2642336
  2. Damadian R. Tumor detection by NMR. Science. Vol. 171, p.1151, 1971. https://doi.org/10.1126/science.171.3976.1151
  3. 최보영. 자기공명분광법. 대한자기공명의과학회지; Vol. 1, pp.1-13, 1997
  4. Frahm J, Merboldt KD. Localized proton spectroscopy using stimulated echoes. Magnetic Resonance in Medicine, Vol. 72, pp.502-508, 1987.
  5. Joseph PH. The Basic of MRI. Rochester Institute of Technology, 1987.
  6. Kai Z, Ernst T . Localized in vivo human 1H MRS at very short echo times. Magnetic Resonance in Medicine, Vol. 52, pp.898-901, 2004. https://doi.org/10.1002/mrm.20201
  7. Peter BB. Single-voxel proton MRS of the human brain at 1.5T and 3.0T Magnetic Resonance in Medicine, Vol. 45, pp.765-769, 2001. https://doi.org/10.1002/mrm.1104
  8. Kreis R, Ernst T, Ross BD. Absolute quantitation of water and metabolites in the human brain. 2. Metabolite concentrations. J Magn Reson B, Vol. 102, pp.9-19, 1993. https://doi.org/10.1006/jmrb.1993.1056
  9. Hetherington HP, Mason GF, Pan JW, et al. Evaluation of cerebral gray and white matter metabolite differences by spectroscopic imaging at 4.1T. Magn Reson Med., Vol. 32, pp.565-571, 1994. https://doi.org/10.1002/mrm.1910320504
  10. GE Medical Systems. MR Advanced Applications Guide PROVE/SV, Vol. 5, pp.19, 1993.

Cited by

  1. Quantitative Analysis of Brain Metabolite Spectrum Depending on the Concentration of the Contrast Media in Phantom vol.9, pp.1, 2015, https://doi.org/10.7742/jksr.2015.9.1.47