DOI QR코드

DOI QR Code

Synchronization of a Complex Dynamical Network with Free Coupling Matrix

자유로운 연결 구조를 갖는 복잡 동적망의 동기화

  • 이태희 (영남대 공대 전기공학과) ;
  • 박주현 (영남대학교 전기공학과) ;
  • 권오민 (충북대학교 전기공학과) ;
  • 이상문 (대구대학교 전자공학부)
  • Received : 2011.05.16
  • Accepted : 2011.07.26
  • Published : 2011.08.01

Abstract

This paper considers synchronization problem of a complex dynamical network. For the problem, the virtual target node is chosen as one of nodes in the complex network and only one connection is needed between an isolate target node and virtual target node not any more connections. Moreover, our synchronization scheme does not need additional conditions and information of coupling matrix comparing with existing works. Based on Lyapunov stability theory, a design criterion for a novel adaptive feedback controller for the synchronization between the isolate target node and another nodes of the complex network is proposed. Finally, the proposed method is applied to a numerical example in order to show the effectiveness of our results.

Keywords

References

  1. S.H. Strogatz, "Exploring complex networks," Nature, vol. 410, pp. 268-276, 2001. https://doi.org/10.1038/35065725
  2. S.N. Dorogovtesev, J.F.F. Mendes, "Evolution of networks," Advances in Physics, vol. 51, pp. 1079-1187, 2002. https://doi.org/10.1080/00018730110112519
  3. M.E.J. Newman, "The structure and function of complex networks," SIAM Review, vol. 45, pp. 167-256, 2003. https://doi.org/10.1137/S003614450342480
  4. J. Zhou, J.A. Lu, J. Lu, "Pinning adaptive synchronization of a general complex dynamical network," Automatica, vol. 44, pp. 996-1003, 2008. https://doi.org/10.1016/j.automatica.2007.08.016
  5. W. Yu, G. Chen, J. Lü, "On pinning synchronization of complex dynamical networks," Automatica, vol. 45, pp. 429-435, 2009. https://doi.org/10.1016/j.automatica.2008.07.016
  6. L. Wang, H.P. Dai, H. Dong, Y.Y. Cao, Y.X. Sun, "Adaptive synchronization of weighted complex dynamical networks through pinning," Eur. Phys. J. B, vol. 61, pp. 335-342, 2008. https://doi.org/10.1140/epjb/e2008-00081-5
  7. L. Xiang, J.J.H. Zhu, "On pinning synchronization of general coupled networks," Nonlinear Dynamics, DOI 10.1007/s11071-010-9865-5, 2010.
  8. D. Xu, Z. Su, "Synchronization criterions and pinning control of general complex networks with time delay," Applied Mathematics and Computation, vol. 215, pp. 1593-1608, 2009. https://doi.org/10.1016/j.amc.2009.07.015
  9. S. Zheng, Q. Bi, G. Cai, "Adaptive projective synchronization in complex networks with time-varying coupling delay," Physics Letters A, vol. 373, pp. 1553-1559, 2009. https://doi.org/10.1016/j.physleta.2009.03.001
  10. Yi-You Hou, Teh-Lu Liao, Jun-Juh Yan, "HN synchronization of chaotic systems using output feedback control design," Phyisca A, vol. 379, pp. 81-89, 2007. https://doi.org/10.1016/j.physa.2006.12.033
  11. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, "Linear Matrix Inequalities in System and Control Theory," SIAM, Philadelphia, 1994.
  12. C.K. Ahn, "$H_{\infty}$ Chaos Synchronization for Nonlinear Bloch Equations," J. Korean Phys. Soc. vol. 55, pp. 2295-2300, 2009. https://doi.org/10.3938/jkps.55.2295