Predictive mathematical model for the growth kinetics of Listeria monocytogenes on smoked salmon

온도와 시간을 주요 변수로한 훈제연어에서의 Listeria monocytogenes 성장예측모델

  • Cho, Joon-Il (Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Food & Drug Administration) ;
  • Lee, Soon-Ho (Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Food & Drug Administration) ;
  • Lim, Ji-Su (Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Food & Drug Administration) ;
  • Kwak, Hyo-Sun (Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Food & Drug Administration) ;
  • Hwang, In-Gyun (Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Food & Drug Administration)
  • 조준일 (식품의약품안전청 식품의약품안전평가원 식품위해평가부 미생물과) ;
  • 이순호 (식품의약품안전청 식품의약품안전평가원 식품위해평가부 미생물과) ;
  • 임지수 (식품의약품안전청 식품의약품안전평가원 식품위해평가부 미생물과) ;
  • 곽효선 (식품의약품안전청 식품의약품안전평가원 식품위해평가부 미생물과) ;
  • 황인규 (식품의약품안전청 식품의약품안전평가원 식품위해평가부 미생물과)
  • Received : 2010.08.18
  • Accepted : 2011.05.02
  • Published : 2011.06.30

Abstract

Predictive mathematical models were developed for predicting the kinetics of growth of Listeria monocytogenes in smoked salmon, which is the popular ready-to-eat foods in the world, as a function of temperature (4, 10, 20 and $30^{\circ}C$). At these storage temperature, the primary growth curve fit well ($r^2$=0.989~0.996) to a Gompertz equation to obtain specific growth rate (SGR) and lag time (LT). The Polynomial model for natural logarithm transformation of the SGR and LT as a function of temperature was obtained by nonlinear regression (Prism, version 4.0, GraphPad Software). Results indicate L. monocytogenes growth was affected by temperature mainly, and SGR model equation is $365.3-31.94^*Temperature+0.6661^*Temperature^{\wedge^2}$ and LT model equation is $0.1162-0.01674^*Temperature+0.0009303^*Temperature{\wedge^2}$. As storage temperature decreased $30^{\circ}C$ to $4^{\circ}C$, SGR decreased and LT increased respectively. Polynomial model was identified as appropriate secondary model for SGR and LT on the basis of most statistical indices such as bias factor (1.01 by SGR, 1.55 by LT) and accuracy factor (1.03 by SGR, 1.58 by LT).

훈제연어의 L. monocytogenes에 대한 식중독 안전관리 방안 마련 및 위해평가 수행 등을 위하여 성장예측모텔을 개발하였다. 미생물 성장예측모델 개발 방법은 대상 식품 및 환경 조건에 따라 다양하며 통계적으로 유용한 모델을 사용하여야 하기에 본 연구에서는 미생물 성장예측모델 개발에 널리 사용되어 그 적용성이 검토된 Gompertz model과 Polynomial model equation을 이용하여 훈제연어의 L. monocytogenes 최대성장속도(SGR) 및 유도기(LT)에 관한 예측모텔을 개발하였다. 개발된 모델의 적합성 평가를 위해 $B_f$$A_f$ factor를 산출하였고 최대성장속도(SGR)의 경우 0.98, 1.06, 유도기(LT)의 경우 1.60, 1.63으로 나타나 유도기의 적합성이 최대성장속도에 비하여 떨어지는 것으로 확인되었다. 본 연구에서 개발된 훈제연어에서의 L. monocytogenes 성장속도에 관한 모텔은, 수산업, 특히 훈제연어 생산, 가공, 보관 및 판매업에 다양한 방면으로 활용 가능할 것으로 판단되며, 더욱 정확한 예측모텔 개발을 위해서는 다양한 변수에 따른 미생물의 성장패턴 변화 등에 관한 연구가 추가적으로 시행되어야 할 것으로 생각되어 진다.

Keywords

References

  1. Alexandros, T., Nikoleta, Z. and Antonia S. G.: Study of the effect of lethal and sublethal pH and $a_w$ stresses on the inactivation or growth of Listeria monocytogenes and Salmonella Typhimurium, Food microbiology, 134, 104-112 (2009). https://doi.org/10.1016/j.ijfoodmicro.2009.02.016
  2. Boziaris, I.S., Skandamis, P.N., Anastasiadi, M. and Nychas, G.: Effect of NaCl and KCl on fate and growth/no growth interfaces of Listeria monocytogenes Scott A at different ph and nisin concentrations, Applied Microbiology, 102, 796-805 (2006).
  3. FAO/WHO: Risk assessment of Listeria monocytogenes in ready-to-eat foods, Technical report, [FAO/WHO] Microbiological risk assessment series (No. 5, 307).
  4. FDA: Listeria. http://www.fda.gov/womens/getthefacts/listeria.html. (2005).
  5. Food Standards Agency: Increased incidence of listeriosis in the UK. http://www.food.gov.uk/consultations/consulteng/2008/acmsflisteriosis (2009).
  6. Cornelius, A.J., Hudson, J.A. and Wong, T.L.: Enumeration and growth of naturally occurring Listeria spp. in unpackaged ham, Food Microbiology, 25, 407-412 (2008). https://doi.org/10.1016/j.fm.2007.11.005
  7. Bahk, G.J., Kim, S.J., Sim, W.C., Chun, S.J., Choi, E.Y., Choi, W.S. and Hong CH: Estimation of contamination level of Listeria monocytogenes in meat and meat products using probability approaches, J. Fd Hyg. Safety 18, 107-112 (2003).
  8. Lake, R., Hudson, A., Cressey, P. and Nortje, G.: Risk profile: Listeria monocytogenes in processed ready-to-eat meats. Institute of Environmental Science & Research, http://www.nzfsa.govt.nz/sceince/riskprofiles/listeria-in-rte-meat.pdf .
  9. Bahk, G.J., Oh, D.H., Ha, S.D., Park, K.H., Joung, M.S., Chun, S.J., Park, J.S., Woo, G.J. and Hong, C.H.: Quantitative microbial risk assessment model for staphylococcus aureus in Kimbab. Korean J. Food Sci. Technol., 37, 484-491 (2005).
  10. Afshin, A.B., Misaghi, A. and Khaschabi, D.: Growth response and modelling of the effects of Zataria multiflora Boiss. essential oil, pH and temperature on Salmonella Typhimurium and Staphylococcus aureus, Lebensmittel -Wissenschaft + Technologie, 40, 973-981 (2006).
  11. Amit, P., Theodore, P.L. and Francisco, D.: Comparison of primary predictive models to study the growth of Listeria monocytogenes at low temperatures in liquid cultures and selection of fastest growing ribotypes in meat and turkey product slurries: Food microbiology, 25, 460-470 (2008). https://doi.org/10.1016/j.fm.2008.01.009
  12. Baranyi, J. and Roverts, T.A.: A dynamic approach to predicting bacterial growth in food, Food microbiology, 23, 277-294 (1994). https://doi.org/10.1016/0168-1605(94)90157-0
  13. Hong, C.H., Sim, W.C., Chun, S.J., Kim, Y.S., Oh, D.H., Ha, S.D., Choi, W.S. and Bahk, G.J.: Predictive growth model of native isolated Listeria monocytogenes on raw pork as a function of temperature and time. Korean J. Food Sci. Technol., 37, 850-855 (2005).
  14. Moon, S.Y., Woo, G.J. and Shin, I.S.: Development of predictive growth model Listeria monocytogenes using mathematical quantitative assessment model. Korean J. Food Sci. Technol., 37, 194-198 (2005).
  15. Chen H: Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk, Food Microbiology, 24, 197-204 (2007). https://doi.org/10.1016/j.fm.2006.06.004
  16. Delignette-Muller, M.L., Cornu, M., Pouillot, R. and Denis, J.B.: Use of Bayesian modelling in risk assessment: Application to growth of Listeria monocytogenes and food flora in cold-smoked salmon, Food microbiology, 106, 195-208 (2006). https://doi.org/10.1016/j.ijfoodmicro.2005.06.021
  17. Oh, D.H., Rahman, S.M.E., Kim, J.M. and Park, G.J.: The statistics probability analysis of pork-cutting processing conditions for microbial risk assessment. J. Food Hyg. Safety., 24, 63-68 (2009).
  18. Grijspeerdt, K., Kreft, J.U. and Messens, W.: Individual-based modelling of growth and migration of Salmonella enteritidis in hens' eggs, International Journal of Food Microbiology, 100, 323-333 (2005). https://doi.org/10.1016/j.ijfoodmicro.2004.10.028
  19. Hajmeer, M., Basheer, I., Hew, C. and Clive DO: Modeling the survival of Salmonella spp. in chorizos, International Journal of Food Microbiology, 107, 59-67 (2006). https://doi.org/10.1016/j.ijfoodmicro.2005.08.012
  20. Heo, C., Choi, Y.S., Kim, C.J. and Paik HD: Estimation of shelf-life of frankfurter using predictive models of spoilage bacterial growth, Korean J. Food Sci. Ani. Resour., 28, 289-295 (2009).
  21. Heo, C., Kim, H.W., Choi, Y.S., Kim, C.J. and Paik, H.D.: Application of predictive microbiology for shelf-life estimation of Tteokgalbi containing dietary fiber from rice bran, Korean J. Food Sci. Ani. Resour., 28, 232-239 (2008). https://doi.org/10.5851/kosfa.2008.28.2.232
  22. KOREA Food and Drug Administration, Food Code. (2008).
  23. FAO/WHO: Principles and guidelines for incorporating microbiological risk assessment in the development of food safety standards, guidelines and related textes, Report of a Joint FAO/WHO Consultation, Kiel, Germany, 18-22 (2002).
  24. Gimenez, B. and Dalgaard, P.: Modelling and predicting the simultaneous growth of Listeria monocytogenes and spoilage micro-organisms in cold-smoked salmon, Journal of applied microbiology 96, 96-109 (2004). https://doi.org/10.1046/j.1365-2672.2003.02137.x
  25. Isabel, W. and Virginia, N.S.: Use of predictive microbiology in microbial food safety risk assessment. International Journal of Food Microbiology, 36, 97-102 (1997). https://doi.org/10.1016/S0168-1605(97)01260-9
  26. Jagannath, A., Nakamura, I. and Tsuchido, T.: Modelling the combined effects of pH, temperature and sodium chloride stresses on the thermal inactivation of Bacillus subtilis spores in a buffer systems, Journal of applied microbiology, 95, 135-141.
  27. Juneja, V.K., Eblen, B.S. and Marks, H.M.: Modeling nonlinear survival curves to calculate thermal inactivation of Salmonella in poultry of different fat levels, International journal of food microbiology, 70, 37-51 (2001). https://doi.org/10.1016/S0168-1605(01)00518-9
  28. Kim, S.R., Rhee, M.S., Kim, B.C., Lee, H. and Kim, K.H.: Modeling of the inactivation of Salmonella typhimurium by supercritical carbon dioxide in physiological saline and phosphate-buffered saline, J Microbiol Methods, 70, 132-141 (2007). https://doi.org/10.1016/j.mimet.2007.04.003
  29. Koseki, S. and Isobe, S.: Prediction of pathogen growth on iceberg lettuce under real temperature history during distribution from farm to table, International Journal of Food Microbiology, 104, 239-248 (2005). https://doi.org/10.1016/j.ijfoodmicro.2005.02.012
  30. Koseki, S., Mizuno, Y. and Yamamoto, K.: Predictive modelling of the recovery of Listeria monocytogenes on sliced cooked ham after high pressure processing, International Journal of Food Microbiology, 119, 300-307 (2007). https://doi.org/10.1016/j.ijfoodmicro.2007.08.025
  31. Lopez, S., Prieto, M., Dijkstra, J., Dhanoa, M.S. and France, J.: Statistical evaluation of mathematical models for microbial growth, International journal of food microbiology, 96, 289-300 (2004). https://doi.org/10.1016/j.ijfoodmicro.2004.03.026
  32. Miles, D.W., Ross, T., Olley, J. and Mcmeekin, T.A.: Development and evaluation of a predictive model for the effect of temperature and water activity on the growth rate of Vibrio parahaemolyticus, International Journal of Food Microbiology 38, 133-142 (1997). https://doi.org/10.1016/S0168-1605(97)00100-1
  33. Moon, S.Y., Woo, G.J. and Shin, I.S.: Development of predictive growth model of Listeria monoctogenes using mathematical quantitiative asseessment model, Korean J. food sci. technol., 37, 194-198 (2005).
  34. Pal, A., Labuza, T.P. and Diez-Gonzalez, F.: Comparison of primary predictive models to study the growth of Listeria monocytogenes at low temperatures in liquid cultures and selection of fastest growing ribotypes in meat and turkey product slurries, Food Microbiology, 25, 460-470 (2008). https://doi.org/10.1016/j.fm.2008.01.009
  35. Park, S.Y., Choi, J.W., Yeon, H.J., Lee, M.J., Chung, D.W., Kim, M.G., Lee, K.H., Kim, K.S., Lee, D.H. and Bahk, G.J.: Predictive Modeling for the Growth of Listeria monocytogenes as a Function of Temperature, NaCl, and pH, Journal of Microbiology and Biotechnology 15, 1323-1330 (2005).
  36. Zuliani, V., Lebert, I., Augustin, J.C., Garry, P. and Lebert, A.: Modelling the behaviour of Listeria monocytogenes in ground pork as a function of pH, water activity, nature and concentration of organic acid salts, Applied Microbiology, 103, 536-550 (2006).