DOI QR코드

DOI QR Code

용융전기방사를 이용한 PLA/TiO2 나노섬유의 개발

Fabrication of PLA/TiO2 nanofibers using melt-electro-spinning

  • Hwang, Ji-Young (Department of Advanced Materials Science and Technology, Dankook University) ;
  • Kim, Hui-Jin (Korea Institute of Industrial Technology) ;
  • Park, No-Hyung (Korea Institute of Industrial Technology) ;
  • Huh, Hoon (Korea Institute of Industrial Technology) ;
  • Park, Choon-Keun (Korea Institute of Industrial Technology) ;
  • Yoon, Jong-Won (Department of Advanced Materials Science and Technology, Dankook University)
  • 투고 : 2011.05.11
  • 심사 : 2011.06.15
  • 발행 : 2011.06.30

초록

전기방사법을 이용하여 제조된 웹은 높은 비표면적 및 다공성으로 약물전달시스템에 적용하고자 널리 연구 되어지고 있다. 본 연구에서는 생체적합성을 가진 생분해성 고분자 Poly(lactic acid)(PLA)와 생체안정성을 가지는 재료인 $TiO_2$를 이용하여 복합소재를 제작하였다. 인체에 유해한 용매인 chloroform이 포함되어 있지 않은 복합화를 위하여 용융전기방사법을 이용하여 나노섬유를 제작하였다. 이렇게 제조된 PLA/$TiO_2$ web을 scanning electron microscope(SEM)와 field emission transmission electron microscope(FE-TEM)을 이용하여 섬유의 모양을 확인하였고, X-ray diffractometer(XRD)판 이용하여 PLA/$TiO_2$ web의 결정구조를 분석하였다.

Electrospun webs have been widely investigated for applying to drug delivery system (DDS) because of their high specific surface area and high porosity. In this study, the composite webs of PLA (poly(lactic acid)) and $TiO_2$ were fabricated by melt-electro-spinning method for applying to drug delivery system. The morphologies of PLA/$TiO_2$, webs were observed using scanning electron microscope (SEM) and field emission transmission electron microscope (FE-TEM). The crystal structures of PLA/$TiO_2$ composite webs were confirmed by X-ray diffractometer (XRD).

키워드

참고문헌

  1. J. Doshi and D.H. Reneker, "Electrospinning process and application of electrospun fibers", Journal of Electrostatics. 35 (1995) 151. https://doi.org/10.1016/0304-3886(95)00041-8
  2. C.J. Buchko, L.C. Chen, Y. Shen and D.C. Martin, "Processing and microstructural characterization of porous biocompatible protein polymer thin films", Polymer. 40 (1999) 7397. https://doi.org/10.1016/S0032-3861(98)00866-0
  3. Z.M. Huang, Y.Z. Zhang, M. Kotaki and S. Ramakrishna, "A review on polymer nanofibers by electrosponnong and their applications in nanocomposites", Composites Science and Technology 63 (2003) 2223. https://doi.org/10.1016/S0266-3538(03)00178-7
  4. E.R. Kenawy, F.I. Adbel-Hay, M.H El-newehy and G.E. Wnek, "Processing of polymer nanofibers through electrospinning as drug delivery systems", Materials Chemistry and Physics. 113 (2009) 296. https://doi.org/10.1016/j.matchemphys.2008.07.081
  5. J. Lyons, C. Li and F. Ko, "Melt-electrospinning part I: processing parameters and geometric properties", Polymer. 45 (2004) 7597. https://doi.org/10.1016/j.polymer.2004.08.071
  6. J. Lyons, Ph.D dissertation, "Melt-electrospinning of Thermoplastic Polymers: An Experimental and Theoretical Analysis", Drexel University (2004).
  7. L. Larrondo and S.J. Manley, "Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties", Journal of Polymer Science Polymer Physics Edition. 19 (1981) 909. https://doi.org/10.1002/pol.1981.180190601
  8. L. Larrondo and S.J. Manley, "Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet", Journal of Polymer Science Polymer Physics Edition. 19 (1981) 921. https://doi.org/10.1002/pol.1981.180190602
  9. L. Larrondo and S.J. Manley, "Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt", Journal of Polymer Science Polymer Physics Edition. 19 (1981) 933. https://doi.org/10.1002/pol.1981.180190603
  10. J.S. Kim and D.S. Lee, "Thermal properties of electrospun polyesters", Polymer Journal 32 (2000) 616. https://doi.org/10.1295/polymj.32.616
  11. Y. Ikada and H. Tsuji, "Biodegradable polyesters for medical and ecological applications", Macromol. Rapid Commun. 21 (2000) 117. https://doi.org/10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X
  12. H. Verhoogt, B.A. Ramsay and B.D. Favis, "Polymer Blends Containing Poly(3-Hydroxyalkanoate)S", Polymer. 35 (1994) 5155. https://doi.org/10.1016/0032-3861(94)90465-0
  13. Y.H. Na, Y. He, X. Shuai, Y. Kikkawa, Y. Doi and Y. Inoue, "Compatibilization effect of poly(epsilon-caprolactone)- b-poly(ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/ poly(epsilon-caprolactone) blends", Biomacromolecules. 3 (2002) 1179. https://doi.org/10.1021/bm020050r
  14. J.K. Savaiano and T.J. Webster, "Altered responses of chondrocytes to nanophase PLGA/nanophase titania composites", Biomaterials. 25 (2004) 1205. https://doi.org/10.1016/j.biomaterials.2003.08.012
  15. M.E. Davis, Z.G. Chen and D.M. Shin, "Nanoparticle therapeutics: an emerging treatment modality for cancer", Nat Rev Drug Discovery. 7 (2008) 771. https://doi.org/10.1038/nrd2614
  16. C. Chen, G. Lv, C. Pan, M. Song, C. Wu, D. Guo, X. Wang, B. Chen and Z. Gu, "Poly(lactic acid) (PLA) based nanocomposites-a novel way of drug-releasing", Biomedical Materials 2 (2007) L1. https://doi.org/10.1088/1748-6041/2/4/L01