DOI QR코드

DOI QR Code

Mitochondrial Affinity of Guanidine-rich Molecular Transporters Built on Monosaccharide Scaffolds: Stereochemistry and Lipophilicity

  • Lee, Woo-Sirl (Department of Chemistry, Pohang University of Science and Technology) ;
  • Kim, Wan-Il (Department of Life Science, Pohang University of Science and Technology) ;
  • Kim, Kyong-Tai (Department of Life Science, Pohang University of Science and Technology) ;
  • Chung, Sung-Kee (Department of Chemistry, Pohang University of Science and Technology)
  • Received : 2011.04.25
  • Accepted : 2011.05.24
  • Published : 2011.07.20

Abstract

We synthesized eight G8 molecular transporters (MTs) based on 4 different monosaccharide scaffolds, and studied their biological properties with a special focus on possible mitochondrial targeting and tissue selectivity. The mitochondrial affinity of these MTs was found to be clearly related to the scaffold stereochemistry and also tenuously with the lipophilicity. It may be suggested that in the practical delivery strategy of drugs for the brain and mitochondrial diseases the BBB permeability and mitochondrial affinity should be considered as key parameters, and that an enhanced mitochondrial affinity appears possible by further research on the structure-property relationship of guanidine-rich molecular transporters.

Keywords

References

  1. Langel, U. Handbook of Cell-Penetrating Peptides, 2nd ed.; CRC Press: Boca Raton, 2007.
  2. Wender, P. A.; Galliher, W. C.; Goun, E. A.; Jones, L. R.; Pillow, T. H. Adv. Drug Deliv. Rev. 2008, 60, 452-472. https://doi.org/10.1016/j.addr.2007.10.016
  3. Nakase, I.; Takeuchi, T.; Tanaka, G.; Futaki, S. Adv. Drug Deliv. Rev. 2008, 60, 598-607. https://doi.org/10.1016/j.addr.2007.10.006
  4. Vives, E.; Schmidt, J.; Pelegrin, A. Biochim. Biophys. Acta 2008, 1786, 126-138.
  5. Joliot, A.; Prochiantz, A. Nature Cell Biol. 2004, 6, 189-196. https://doi.org/10.1038/ncb0304-189
  6. Chung, S. K.; Maiti, K. K.; Lee, W. S. Int. J. Pharmaceutics 2008, 354, 16-21. https://doi.org/10.1016/j.ijpharm.2007.08.016
  7. Maiti, K. K.; Jeon, O. Y.; Lee, W. S.; Kim, D. C.; Kim, K. T.; Takeuchi, T.; Futaki, S.; Chung, S. K. Angew. Chem. Int. Ed. 2006, 45, 2907-2912. https://doi.org/10.1002/anie.200600312
  8. Maiti, K. K.; Lee, W. S.; Takeuchi, T.; Watkins, C.; Fretz, M.; Kim, D. C.; Futaki, S.; Jones, A.; Kim, K. T.; Chung, S. K. Angew. Chem. Int. Ed. 2007, 46, 5880-5884. https://doi.org/10.1002/anie.200701346
  9. Biswas, G.; Jeon, O. Y.; Lee, W. S.; Lee, S.; Chang, S.; Kim, D. C.; Kim, K. T.; Chung, S. K. Chem. Eur. J. 2008, 14, 9161-9168. https://doi.org/10.1002/chem.200801160
  10. Lee, W. S.; Im, C. N.; Teng, Q. Y.; Chang, Y. T.; Kim, D. C.; Kim, K. T.; Chung, S. K. Mol. Biosyst. 2009, 5, 822-825. https://doi.org/10.1039/b901846h
  11. Higashi, T.; Khalil, I. A.; Maiti, K. K.; Lee, W. S.; Akita, H.; Harashima, H.; Chung, S. K. J. Control. Release 2009, 136, 140- 147. https://doi.org/10.1016/j.jconrel.2009.01.024
  12. Im, J.; Kim, W.; Kim, K. T.; Chung, S. K. Chem. Commun. 2009, 4669-4671.
  13. Weissig, V.; Cheng, S. M.; D'Souza, G. G. M. Mitochondrion 2004, 3, 229-244. https://doi.org/10.1016/j.mito.2003.11.002
  14. Hoye, A. T.; Davoren, J. E.; Wipf, P.; Fink, M. P.; Kagan, V. E. Acc. Chem. Res. 2008, 41, 87-97. https://doi.org/10.1021/ar700135m
  15. Wallace, D. C. Science 1999, 283, 1482-1488. https://doi.org/10.1126/science.283.5407.1482
  16. Green, D. R.; Reed, J. C. Science 1998, 281, 1309-1312. https://doi.org/10.1126/science.281.5381.1309
  17. Bae, B. I.; Igarashi, S.; Fujimori, M.; Argrawal, N.; Taya, Y.; Hayward, S. D.; Moran, T. H.; Ross, C. A.; Snyder, S. H.; Sawa, A. Neuron 2005, 47, 29-41. https://doi.org/10.1016/j.neuron.2005.06.005
  18. Manczak, M.; Anekonda, T. S.; Henson, E.; Park, B. S.; Quinn, J.; Reddy, P. M. Hum. Mol. Genet. 2006, 15, 1437-1449. https://doi.org/10.1093/hmg/ddl066
  19. Ghosh, S. C.; Kim, B.; Im, J.; Lee, W. S.; Im, C. N.; Chang, Y. T.; Kim, W.; Kim, K. T.; Chung, S. K. Bull. Kor. Chem. Soc. 2010, 31(12), 3623-3631. https://doi.org/10.5012/bkcs.2010.31.12.3623
  20. Mbadugha, B. N. A.; Menger, F. M. Org. Lett. 2003, 5, 4041- 4044. https://doi.org/10.1021/ol030084r
  21. Egusa, K.; Kusumoto, S.; Fukase, K. Eur. J. Org. Chem. 2003, 3435-3445.
  22. Haky, J. E.; Young, A. M. J. Liq. Chromatogr. 1984, 7, 675-689. https://doi.org/10.1080/01483918408073995
  23. Lombardo, F.; Shalaeva, M. Y.; Tupper, K. A.; Gao, F.; Abraham, M. H. J. Med. Chem. 2000, 43, 2922-2928. https://doi.org/10.1021/jm0000822
  24. Lombardo, F.; Shalaeva, M. Y.; Tupper, K. A.; Gao, F. J. Med. Chem. 2001, 44, 2490-2497. https://doi.org/10.1021/jm0100990

Cited by

  1. On Guanidinium and Cellular Uptake vol.79, pp.15, 2014, https://doi.org/10.1021/jo501101s
  2. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012 vol.36, pp.3, 2015, https://doi.org/10.1002/mas.21471
  3. Synthesis of Bisdesmosidic Oleanolic Acid Saponins via a Glycosylation-Deprotection Sequence under Continuous Microfluidic/Batch Conditions vol.82, pp.13, 2017, https://doi.org/10.1021/acs.joc.7b00841
  4. pp.12295949, 2018, https://doi.org/10.1002/bkcs.11611