DOI QR코드

DOI QR Code

Influence of para-orientating Methoxyl Units on the Electronic Structures and Light Absorption Properties of the Triphenylamine-based dyes by DFT Study

  • Liang, Guijie (College of Materials Science & Engineering, Xi'an Jiao tong University) ;
  • Xu, Jie (Key Lab of Green Processing & Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University) ;
  • Xu, Weilin (Key Lab of Green Processing & Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University) ;
  • Wang, Luoxin (Key Lab of Green Processing & Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University) ;
  • Shen, Xiaolin (Key Lab of Green Processing & Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University) ;
  • Yao, Mu (Xi'an Polytechnic University)
  • Received : 2010.08.26
  • Accepted : 2011.05.23
  • Published : 2011.07.20

Abstract

The geometries, electronic structures and absorption spectra of the two organic triphenylamine-based dyes TA-St-CA and TA-DM-CA, containing identical electron donors and acceptors but the different conjugated bridges, were studied by density functional theory (DFT) at the B3LYP and PBE1PBE levels, respectively. The influence of para-orientating methoxyl units on the electronic structures and light absorption properties of the dyes and the consequent photovoltaic performance of the dye-sensitized solar cells (DSSCs) were investigated in detail. The results indicate that the introduction of the para-orientating methoxyl units into the conjugated bridge induces the increased absorption wavelength as well as the more negative EHOMO corresponding to the bigger driving force $(E_{I^-/I^-_3}-E_{HOMO})$ for dye reduction, which together improve the photovoltaic performance of TA-DM-CA, although there is a decline of the open circuit voltage caused by the more negative $E_{LUMO}$.

Keywords

References

  1. Oregan, B.; Grazel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  2. Papageorgiou, N.; Grazel, M.; Infelta, P. P. Sol. Energy Mater. Sol. Cells 1996, 44, 405. https://doi.org/10.1016/S0927-0248(96)00050-5
  3. Hagfeldt, A.; Gratzel, M. Acc. Chem. Res. 2000, 33, 269. https://doi.org/10.1021/ar980112j
  4. Kuang, D.; Klein, C.; Snaith, H. J.; Humphry-Baker, R.; Zakeeruddin, S. M.; Gräzel, M. Inorg. Chim. Acta 2008, 361, 699. https://doi.org/10.1016/j.ica.2007.05.031
  5. Liu, Z. Theochem-J. Mol. Struct. 2008, 862, 44. https://doi.org/10.1016/j.theochem.2008.04.022
  6. Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M. J. Am. Chem. Soc. 2001, 123, 1613. https://doi.org/10.1021/ja003299u
  7. Guo, M.; Diao, P.; Ren, Y.-J.; Meng, F.; Tian, H.; Cai, S.-M. Sol. Energy Mater. Sol. Cells 2005, 88, 23. https://doi.org/10.1016/j.solmat.2004.10.003
  8. Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004, 126, 12218. https://doi.org/10.1021/ja0488277
  9. Diao, L. Y.; Gu, W. X.; Chen, Y. H.; Ma, F. C. Chin. J. Chem. Phys. 2006, 19, 238. https://doi.org/10.1360/cjcp2006.19(3).238.5
  10. Enea, O.; Moser, J.; Grazel, M. J. Electroanal. Chem. 1989, 259, 59. https://doi.org/10.1016/0022-0728(89)80038-5
  11. Ma, R. M.; Guo, P.; Yang, L. L.; Guo, L. S.; Zeng, Q. H.; Liu, G. Q.; Zhang, X. X. Theochem-J. Mol. Struct. 2001, 942, 131.
  12. Balanay, M. P.; Kim, D. H. Phys. Chem. Chem. Phys. 2008, 10, 5121. https://doi.org/10.1039/b806097e
  13. De Angelis, F.; Fantacci, S.; Selloni, A. Nanotechnology 2008, 19, 424002. https://doi.org/10.1088/0957-4484/19/42/424002
  14. Hwang, S.; Lee, J. H.; Park, C.; Lee, H.; Kim, C.; Lee, M. H.; Lee, W.; Park, J.; Kim, K.; Park, N. G. Chem. Commun. 2007, 4887.
  15. Zhang, C.-R.; Liu, Z.-J.; Chen, Y.-H.; Chen, H.-S.; Wu, Y.-Z.; Feng, W.; Wang, D.-B. Curr. Appl. Phys. 2010, 10, 77. https://doi.org/10.1016/j.cap.2009.04.018
  16. Im, H.; Kim, S.; Park, C.; Jang, S. H.; Kim, C. J.; Kim, K.; Park, N. G.; Kim, C. Chem. Commun. 2010, 46, 1335. https://doi.org/10.1039/b917065k
  17. Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109, 8218. https://doi.org/10.1063/1.477483
  18. Hirata, S.; Head-Gordon, M. Chem. Phys. Lett. 1999, 302, 375. https://doi.org/10.1016/S0009-2614(99)00137-2
  19. Telez, S. C. A.; Hollauer, E.; Giannerini, T.; Pais da Silva, M. I.; Mondragón, M. A.; Rodríguez, T. J. R.; Castano, V. M. Spectrochim. Acta, Part A 2004, 60, 2171. https://doi.org/10.1016/j.saa.2003.11.011
  20. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  21. Tiwary, A. S.; Mukherjee, A. K. Theochem-J. Mol. Struct. 2008, 859, 107. https://doi.org/10.1016/j.theochem.2008.03.015
  22. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  23. Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett. 1996, 255, 327. https://doi.org/10.1016/0009-2614(96)00349-1
  24. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Revision E.01, Gaussian, Inc.: Wallingford CT, 2004.
  25. De Angelis, F.; Tilocca, A.; Selloni, A. J. Am. Chem. Soc. 2004, 126, 15024. https://doi.org/10.1021/ja045152z
  26. Xu, J.; Zhang, H.; Liang, G. J.; Wang, L. X.; Xu, W. L.; Cui, W. G.; Li, Z. C. J. Serb. Chem. Soc. 2010, 75, 259. https://doi.org/10.2298/JSC1002259X

Cited by

  1. Efficient triphenylamine photosensitizers with alkoxy- or fluorine-substituted phenylene spacer for dye-sensitized solar cells vol.47, pp.4, 2012, https://doi.org/10.1007/s10853-011-5971-0