DOI QR코드

DOI QR Code

A Highly Sensitive Determination of Bulk Cu and Ni in Heavily Boron-doped Silicon Wafers

  • Received : 2011.01.27
  • Accepted : 2011.05.17
  • Published : 2011.07.20

Abstract

The new metrology, Advanced Poly-silicon Ultra-Trace Profiling (APUTP), was developed for measuring bulk Cu and Ni in heavily boron-doped silicon wafers. A Ni recovery yield of 98.8% and a Cu recovery yield of 96.0% were achieved by optimizing the vapor phase etching and the wafer surface scanning conditions, following capture of Cu and Ni by the poly-silicon layer. A lower limit of detection (LOD) than previous techniques could be achieved using the mixture vapor etching method. This method can be used to indicate the amount of Cu and Ni resulting from bulk contamination in heavily boron-doped silicon wafers during wafer manufacturing. It was found that a higher degree of bulk Ni contamination arose during alkaline etching of heavily boron-doped silicon wafers compared with lightly boron-doped silicon wafers. In addition, it was proven that bulk Cu contamination was easily introduced in the heavily boron-doped silicon wafer by polishing the wafer with a slurry containing Cu in the presence of amine additives.

Keywords

References

  1. Weber, E. R. Physica B 2003, 1, 340.
  2. Shabani, M. B.; Shiina, Y.; Shimanuki, Y. Solid State Phenom. 2004, 359, 95.
  3. Hoelzl, R.; Blietz, M.; Fabry, L.; Schmolke, R. In Semiconductor Silicon; 2002; 9th International Symposium, Huff, H. R., Fabry, L., Kishino, S., Eds.; PV 2002-2; The Electrochemical Society Proceedings Series, Pennington, NJ, 2002; 608.
  4. Kumano, H.; Soyama, H. Electrochem. Solid-State Lett. 2004, 7, G51. https://doi.org/10.1149/1.1648614
  5. Alpern, P.; Bergholz, W.; Kakoshke, R. J. Electrochem. Soc. 1989, 136, 3841. https://doi.org/10.1149/1.2096559
  6. Holzl, R.; Huber, A.; Fabry, L.; Range, K. J.; Blietz, M. Appl. Phys. A: Mater. Sci. Process 2001, 72, 351. https://doi.org/10.1007/s003390000721
  7. Scott, W. D. S.; Stevenson, A. J. Electrochem. Soc. 2004, 151, G8. https://doi.org/10.1149/1.1628239
  8. Tokuda, N.; Nishiguchi, S.; Yamasaki, S.; Miki, K.; Yamabe, K. J. Electrochem. Soc. 2004, 151, F81. https://doi.org/10.1149/1.1649984
  9. Kohn, A.; Lipp, E.; Eizenberg, M.; Shacham-Diamand, Y. Appl. Phys. Lett. 2004, 85, 627. https://doi.org/10.1063/1.1773925
  10. Matsukawa, K.; Yamamoto, H.; Mashiko, Y. Jpn. J. Appl. Phy. Part 1 2002, 41, 5900. https://doi.org/10.1143/JJAP.41.5900
  11. Tokuda, N.; Kanda, T.; Yamasaki, S.; Miki, K.; Yamabe, K. Jpn. J. Appl. Phys. Part 2 2003, 42, L160. https://doi.org/10.1143/JJAP.42.L160
  12. Oborina, E.; Campbell, S.; Hoff, A. M.; Gibert, R.; Persson, E.; Simpson, D. Malter. Res. Soc. Symp. Proc. 2002, 716, 651.
  13. Koveshnikov, S.; Beauchaine, D.; Radzimski, X.; Ling, L.; Ravi, K. V. Solid State Phenom. 2002, 82-84, 393. https://doi.org/10.4028/www.scientific.net/SSP.82-84.393
  14. Kim, Y. H.; Lee, K. S.; Chung, H. Y.; Hwang, D. H.; Kim, H. S. Cho, H. Y.; Lee, B. Y. J. Korean Phys. Soc. 2001, 39, 348.
  15. Fabry, L.; Hoelzl, R.; Andrukhiv, A.; Matsumoto, K.; Qiu, J.; Koveshnikov, S.; Goldstein, M.; Grabau, A.; Horie, H.; Takeda, R. J. Electrochem. Soc. 2006, 153, G566-G571. https://doi.org/10.1149/1.2186799
  16. Shabani, M. B.; Shiina, Y.; Kirscht, F. G.; Shimanuki, Y. Mat. Sci. Eng. 2003, B102, 238.
  17. Kabacelik, I.; Ulug, B. App. Sur. Sci. 2008, 254, 1870. https://doi.org/10.1016/j.apsusc.2007.08.064
  18. Prewett, W.; Promphutha, M. Anal. Chim. Acta 1997, 339, 297. https://doi.org/10.1016/S0003-2670(96)00480-1
  19. Jong, J. D.; Schoemann, V.; Lannuzel, D.; Tison, J. L. Anal. Chim. Acta 2008, 623, 126. https://doi.org/10.1016/j.aca.2008.06.013
  20. Nakano, M.; Sato, M. U.S. patent 6503363, 2003.
  21. Seidel, H.; Csepregi, L.; Heuberger, A.; Baumgartel, H. J. Electrochem. Soc. 1990, 137, 3626. https://doi.org/10.1149/1.2086278
  22. Falster, R. et al., U.S. patent 006100167, 2000.
  23. Tetsuo, S. et al., U.S. patent 6884634, 2002.

Cited by

  1. Nickel Contamination from Caustic Etching of Silicon Wafers vol.7, pp.5, 2018, https://doi.org/10.1149/2.0061805jss
  2. Fast and Slow Stages of Lifetime Degradation by Boron–Oxygen Centers in Crystalline Silicon vol.257, pp.1, 2011, https://doi.org/10.1002/pssb.201900167