References
- Baklizi, A. (2008). Likelihood and Bayesian estimation of Pr(X < Y) using lower record values from the generalized exponential distribution, Computational Statistics and Data Analysis, 52, 3468-3473. https://doi.org/10.1016/j.csda.2007.11.002
- Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian Analysis with Reference Priors, Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.2307/2289864
- Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion), Bayesian Statistics IV, J. M. Bernardo, et al., Oxford University Press, Oxford, 35-60.
- Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion), Journal of Royal Statistical Society, Series B, 41, 113-147.
- Cox, D. R. and Reid, N. (1987). Orthogonal parameters and approximate conditional inference (with discussion), Journal of Royal Statistical Society, Series B, 49, 1-39.
- Datta, G. S. and Ghosh, J. K. (1995a). On priors providing frequentist validity for Bayesian inference, Biometrika, 82, 37-45. https://doi.org/10.1093/biomet/82.1.37
- Datta, G. S. and Ghosh, M. (1995b). Some remarks on noninformative priors, Journal of the American Statistical Association, 90, 1357-1363. https://doi.org/10.2307/2291526
- Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors, The Annals of Statistics, 24, 141-159. https://doi.org/10.1214/aos/1033066203
- Datta, G. S., Ghosh, M. and Mukerjee, R. (2000). Some new results on probability matching priors, Calcutta Statistical Association Bulletin, 50, 179-192. https://doi.org/10.1177/0008068320000306
- DiCiccio, T. J. and Stern, S. E. (1994). Frequentist and Bayesian bartlett correction of test statistics based on adjusted profile likelihood, Journal of Royal Statistical Society, Series B, 56, 397-408.
- Ghosh, J. K. and Mukerjee, R. (1992). Noninformative priors (with discussion), Bayesian Statistics IV, J.M. Bernardo, et. al., Oxford University Press, Oxford, 195-210.
- Ghosh, J. K. and Mukerjee, R. (1995). Frequentist validity of highest posterior density regions in the presence of nuisance parameters, Statistics & Decisions, 13, 131-139.
- Gupta, R. and Kundu, D. (1999). Generalized exponential distributions, Australian and New Zealand Journal of Statistics, 41, 173-188. https://doi.org/10.1111/1467-842X.00072
- Gupta, R. and Kundu, D. (2001). Generalized exponential distribution, an alternative to gamma and Weibull distribution, Biometrical Journal, 43, 117-130. https://doi.org/10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R
- Kang, S. G., Kim, D. H. and Lee,W. D. (2011). Noninformative priors for stress-strength reliability in the Pareto distributions, Journal of the Korean Data & Information Science Society, 22, 115-123.
- Kim, D. H., Kang, S. G. and Lee,W. D. (2009). Noninformative priors for Pareto distribution, Journal of the Korean Data & Information Science Society, 20, 1213-1223.
- Kundu, D. and Gupta, R. (2005). Estimation of P[Y < X] for generalized exponential distribution, Metrika, 61, 291-308. https://doi.org/10.1007/s001840400345
- Kundu, D. and Gupta, R. (2007). Generalized exponential distribution: Existing results and some recent developments, Journal of Statistical Planning and Inference, 136, 3130-3144.
- Mukerjee, R. and Dey, D. K. (1993). Frequentist validity of posterior quantiles in the presence of a nuisance parameter: Higher order asymptotics, Biometrika, 80, 499-505. https://doi.org/10.1093/biomet/80.3.499
- Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors, Biometrika, 84, 970-975. https://doi.org/10.1093/biomet/84.4.970
- Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors, Biometrika, 84, 970-975. https://doi.org/10.1093/biomet/84.4.970
- Raqab, M. Z. and Madi, M. T. (2005). Bayesian inference for the generalized exponential distribution, Journal of Statistical Computation and Simulation, 75, 841-852. https://doi.org/10.1080/00949650412331299166
- Stein, C. (1985). On the coverage probability of confidence sets based on a prior distribution, Sequential Methods in Statistics, Banach Center Publications, 16, 485-514. https://doi.org/10.4064/-16-1-485-514
- Tibshirani, R. (1989). Noninformative priors for one parameter of many, Biometrika, 76, 604-608. https://doi.org/10.1093/biomet/76.3.604
- Welch, B. L. and Peers, H. W. (1963). On formulae for confidence points based on integrals of weighted likelihood, Journal of Royal Statistical Society, Series B, 25, 318-329.
- Wong, A. C. M. and Wu, Y. Y. (2009). A note on interval estimation P(X < Y) using lower record data from the generalized exponential distribution, Computational Statistics and Data Analysis, 53, 3650-3658. https://doi.org/10.1016/j.csda.2009.03.006